首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p16/INK4A is one of the major target genes in carcinogenesis and its inactivation has frequently been reported in other types of tumors. The purpose of this study is to evaluate inactivation patterns of p16/INK4A in oral squamous cell carcinoma. Six different oral cancer cell lines, SCC-4, SCC-9, SCC-15, SCC-25, KB, and SNUDH- 379 were examined for inactivation of p16/INK4A genes. In the analysis of p16/INK4A gene inactivation, PCR amplification, direct sequencing, and methylation-specific PCR methods were adopted for evaluation of homozygous deletion, point mutation, and promoter hypermethylation, respectively. Homozygous deletion was detected in SCC-25 and SCC-9. SCC-15 showed hypermethylated promoter region within p16/INK4A gene. It is suggestive in the present study that inactivation patterns of p16/INK4A were mainly homozygous deletion, promoter methylation rather than point mutation in oral squamous cancer cell lines, so treatment modalities of oral squamous cell carcinoma should be focused on these types of inactivation.  相似文献   

2.
Cell cycle control plays a key role in the growth of normal mammalian cells. One of the fundamental abnormalities in human tumors is dysregulated cell cycle control. It is generally accepted that active Cdk4–Cyclin D1 complexes help cells to pass through the R point, a point of no return, after which cells become committed to a new round of replication. Accumulated evidences indicate that Cdk4 is the ‘primary sensor’ for driving cells through the R point and it is widely known that P16INK4a can arrest cells in G1.But how can the expression of exogenous P16INK4 gene affect the activity of Cdk4–Cyclin D1 remains unclear. In this study, using exogenous wild type P16 gene and antibodies for P16, Cdk4, Cyclin D1 and Rb proteins, we examined the expression of exogenous wild type P16 gene and the changes of cell cycle regulatory genes-Cdk4, Cyclin D1 and Rb in human bladder cancer cells. The cell growth analysis revealed that the proliferation of P16 gene transfected cancer cells was inhibited after the transfection of exogenous wild P16 gene. The immunocytochemical results indicated that after the transfection of exogenous wild type P16 gene, the expression of Cdk4, Cyclin D1 and Rb were negative in the nuclei while the expression of P16 significantly increased in the nuclei and the cytoplasm. Our results suggest that the transfection of exogenous wild P16 gene induces the inhibition of proliferation of the bladder cancer cells and the increasing expression P16 inhibits the expression of Cdk4, Cyclin D1 and Rb in nuclei, which results in the cell cycle being inhibited at G0/G1 phase. As a consequence, exogenous P16 has negative effects on the malignant proliferation of bladder cancer cells and it may be considered as target for potential anti-cancer drugs.  相似文献   

3.
Cervical cancer, a potentially preventable disease, has its main aetiology in infection by high risk human papillomavirus (HR-HPV). Approaches to improving cervical cancer screening and diagnostic methodologies include molecular biological analysis, targeting of biomarker proteins, but also exploration and implementation of new techniques such as vibrational spectroscopy. This study correlates the biomarker protein p16(INK4A) expression levels dependent on HPV copy number with the infrared absorption spectral signatures of the cervical cancer cell lines, HPV negative C33A, HPV-16 positive SiHa and CaSki and HPV-18 positive HeLa. Confocal fluorescence microscopy demonstrated that p16(INK4A) is expressed in all investigated cell lines in both nuclear and cytoplasmic regions, although predominantly in the cytoplasm. Flow cytometry was used to quantify the p16(INK4A) expression levels and demonstrated a correlation, albeit nonlinear, between the reported number of integrated HPV copies and p16(INK4A) expression levels. CaSki cells were found to have the highest level of expression, HeLa intermediate levels, and SiHa and C33A the lowest levels. FTIR spectra revealed differences in nucleic acid, lipid and protein signatures between the cell lines with varying HPV copy number. Peak intensities exhibited increasing tendency in nucleic acid levels and decreasing tendency in lipid levels with increasing HPV copy number, and although they were found to be nonlinearly correlated with the HPV copy number, their dependence on p16(INK4A) levels was found to be close to linear. Principal Component Analysis (PCA) of the infrared absorption spectra revealed differences between nuclear and cytoplasmic spectroscopic signatures for all cell lines, and furthermore clearly differentiated the groups of spectra representing each cell line. Finally, Partial Least Squares (PLS) analysis was employed to construct a model which can predict the p16(INK4A) expression level based on a spectral fingerprint of a cell line, demonstrating the diagnostic potential of spectroscopic techniques.  相似文献   

4.
TNF-related apoptosis-inducing ligand (TRAIL/Apo- 2L), a newly identified member of the TNF family promotes apoptosis by binding to the transmembrane receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL known to activate NF-kappaB in number of tumor cells including A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells exerts relatively selective cytotoxic affects to the human tumor cell lines without much effect on the normal cells. We set out to identify an agent that would sensitize lung cancer cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. We found that triptolide, an oxygenated diterpene extracted and purified from the Chinese herb Tripterygium wilfordii sensitized A549 and NCI-H1299 cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. Pretreatment with MG132 which is a well-known NF-kappaB inhibitor by blocking degradation of IkappaBalpha also greatly sensitized lung cancer cells to TRAIL-induced apoptosis. Triptolide did not block DNA binding of NF-kappaB activated by TRAIL as in the case of TNF-alpha. It has been already proven that triptolide blocks transactivation of p65 which plays a key role in NF-kappaB activation. These observations suggest that triptolide may be a potentially useful drug to enhance TRAIL-induced tumor killing in lung cancer.  相似文献   

5.
Conventional chemotherapy remains an integral part of lung cancer therapy, regardless of its toxicity and drug resistance. Consequently, the discovery of an alternative to conventional chemotherapy is critical. Artemisia santolinifolia ethanol extract (AS) was assessed for its chemosensitizer ability when combined with the conventional anticancer drug, docetaxel (DTX), against non-small cell lung cancer (NSCLC). SRB assay was used to determine cell viability for A549 and H23 cell lines. The potential for this combination was examined by the combination index (CI). Further cell death, analyses with Annexin V/7AAD double staining, and corresponding protein expressions were analyzed. Surprisingly, AS synergistically enhanced the cytotoxic effect of DTX by inducing apoptosis in H23 cells through the caspase-dependent pathway, whereas selectively increased necrotic cell population in A549 cells, following the decline in GPX4 level and reactive oxygen species (ROS) activation with the highest rate in the combination treatment group. Furthermore, our results highlight the chemosensitization ability of AS when combined with DTX. It was closely associated with synergistic inhibition of oncogenesis signaling molecule STAT3 in both cell lines and concurrently downregulating prosurvival protein Survivin. Conclusively, AS could enhance DTX-induced cancer cells apoptosis by abrogating substantial prosurvival proteins’ expressions and triggering two distinct cell death pathways. Our data also highlight that AS might serve as an adjunctive therapeutic option along with a conventional chemotherapeutic agent in the management of NSCLC patients.  相似文献   

6.
Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC) cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at G2/M phase. Xanthatin also had pro-apoptotic effects on A549 cells as evidenced by Hoechst 33258 staining and annexin V-FITC staining. Mechanistic data revealed that xanthatin downregulated Chk1, Chk2, and phosphorylation of CDC2, which contributed to the cell cycle arrest. Xathatin also increased total p53 protein levels, decreased Bcl-2/Bax ratio and expression of the downstream factors procaspase-9 and procaspase-3, which triggered the intrinsic apoptosis pathway. Furthermore, xanthatin blocked phosphorylation of NF-κB (p65) and IκBa, which might also contribute to its pro-apoptotic effects on A549 cells. Xanthatin also inhibited TNFa induced NF-κB (p65) translocation. We conclude that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells. These effects were associated with intrinsic apoptosis pathway and disrupted NF-κB signaling. These results suggested that xanthatin may have therapeutic potential against NSCLC.  相似文献   

7.
Previous research reported that the curcumin derivative (CU17) inhibited several cancer cell growths in vitro. However, its anticancer potential against human lung cancer cells (A549 cell lines) has not yet been evaluated. The purpose of this research was to examine the HDAC inhibitory and anti-cancer activities of CU17 compared to curcumin (CU) in A549 cells. An in vitro study showed that CU17 had greater HDAC inhibitory activity than CU. CU17 inhibited HDAC activity in a dose dependent manner with the half-maximal inhibitory concentration (IC50) value of 0.30 ± 0.086 µg/mL against HDAC enzymes from HeLa nuclear extract. In addition, CU17 could bind at the active pockets of both human class I HDACs (HDAC1, 2, 3, and 8) and class II HDACs (HDAC4, 6, and 7) demonstrated by molecular docking studies, and caused hyperacetylation of histone H3 (Ac-H3) in A549 cells shown by Western blot analysis. MTT assay indicated that both CU and CU17 suppressed A549 cell growth in a dose- and time-dependent manner. Besides, CU and CU17 induced G2/M phase cell cycle arrest and p53-independent apoptosis in A549 cells. Both CU and CU17 down-regulated the expression of p53, p21, Bcl-2, and pERK1/2, but up-regulated Bax expression in this cell line. Although CU17 inhibited the growth of lung cancer cells less effectively than CU, it showed less toxicity than CU for non-cancer cells. Accordingly, CU17 is a promising agent for lung cancer treatment. Additionally, CU17 synergized the antiproliferative activity of Gem in A549 cells, indicating the possibility of employing CU17 as an adjuvant treatment to enhance the chemotherapeutic effect of Gem in lung cancer.  相似文献   

8.
The insect baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) has been evaluated as a vector for gene delivery to human tumor cells. A human osteogenic sarcoma cell line, Saos-2, was found to be highly susceptible to infection with a baculoviral vector, with nearly 100% of Saos-2 cells being able to express a lacZ reporter gene after a brief exposure to the virus at a m.o.i. of 30 pfu/cell. The production of beta-galactosidase protein was 18-times greater than that in HepG2 cells which were previously thought to be the mammalian cells most susceptible to the baculovirus. The possibility of developing a baculovirus as a cytotoxic vector for p53-defective cancer was tested by destruction of Saos-2 cells (p53-/-) with a recombinant baculovirus containing the wild type p53 gene (BV-p53) in vitro. The p53 baculovirus induced apoptotic cell death in tumor cells in a dose-dependent manner with approximately 60% killing at an m.o.i. of 160 pfu/cell. Combined treatments of gene therapy (p53) and chemotherapy (adriamycin) resulted in synergistic and potent killing of the osteogenic sarcoma cells. For example, greater than 95% of Saos-2 cells were killed by the combination of BV-p53 (m.o.i. of 100) and adriamycin (35 ng/ml), whereas approximately 50% and approximately 55% cells were killed by BV-p53 and adriamycin alone, respectively. These results indicate that a baculoviral gene delivery vector can be used to efficiently target certain types of mammalian cells and the combination treatment of gene-therapy mediated by a baculovirus and chemotherapy may enhance induction of apoptosis in cancer cells.  相似文献   

9.
10.
Lung cancer has been shown to be resistant to treatment with some chemotherapy drugs due to epithelial-mesenchymal transmission (EMT). Because the rate of cytotoxicity and induction of apoptosis by methotrexate (MTX) is negligible in A549 lung cancer cells, a CD44 positive cell line, we decided to synthesize magnetic nanoparticles (MNPs) containing hyaluronic acid (HA) and MTX to evaluate the effect of CD44 receptor targeting on the expression of genes involved in apoptosis. The TNF genes can modulate the expression of CD44 and implicate carcinogenesis and metastases. Therefore, inhibition of the TNF gene and study of its interaction with the CD44 receptor can determine the success of a treatment method. The results of the MTT assay confirmed that the MNPs-HA-MTX offered better cellular cytotoxic effects on cell viability than free MTX. The real-time PCR test also showed that the Bak1/Bclx ratio was 52.5 times higher than the control. On the other hand, the expression of the TNF gene was severely reduced, which could be due to the binding of HA-moiety of the MNPs-HA-MTX to the receptor and endocytosis. All the results gave us hope that we could increase the effectiveness of methotrexate in lung cancer by targeting the CD44 receptor.  相似文献   

11.
12.
Highly expressible bacteriorhodopsin (HEBR) is a light-triggered protein (optogenetic protein) that has seven transmembrane regions with retinal bound as their chromophore to sense light. HEBR has controllable photochemical properties and regulates activity on proton pumping. In this study, we generated HEBR protein and incubated with lung cancer cell lines (A549 and H1299) to evaluate if there was a growth-inhibitory effect with or without light illumination. The data revealed that the HEBR protein suppressed cell proliferation and induced the G0/G1 cell cycle arrest without light illumination. Moreover, the migration abilities of A549 and H1299 cells were reduced by ~17% and ~31% after incubation with HEBR (40 μg/mL) for 4 h. The Snail-1 gene expression level of the A549 cells was significantly downregulated by ~50% after the treatment of HEBR. In addition, HEBR significantly inhibited the gene expression of Sox-2 and Oct-4 in H1299 cells. These results suggested that the HEBR protein may inhibit cell proliferation and cell cycle progression of lung cancer cells, reduce their migration activity, and suppress some stemness-related genes. These findings also suggested the potential of HEBR protein to regulate the growth and migration of tumor cells, which may offer the possibility for an anticancer drug.  相似文献   

13.
Cancer cells recognize physical cues transmitted from the surrounding microenvironment, and accordingly alter the migration and chemosensitivity. Cell adhesive biomaterials with tunable physical properties can contribute to the understanding of cancer cell responses, and development of new cancer therapies. Previously, it was reported that polyrotaxane-based surfaces with molecular mobility effectively modulate cellular functions via the yes-associated protein (YAP)-related signaling pathway. In the present study, the impact of molecular mobility of polyrotaxane surfaces on the migration and chemosensitivity of lung (A549), pancreatic (BxPC-3), and breast cancer (MDA-MB-231) cell lines is investigated, and it is found that the cellular spreading of adherent A549 and BxPC-3 cells and nuclear YAP translocation are promoted on low-mobility surfaces, suggesting that cancer cells alter their subcellular YAP localization in response to molecular mobility. Furthermore, low-mobility surfaces suppress cellular migration more than high-mobility surfaces. Additionally, low-mobility surfaces promote the cisplatin chemosensitivity of each cancer cell line to a greater extent than high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces suppresses cellular migration and enhances chemosensitivity via the subcellular translocation of YAP in cancer cells. Biointerfaces based on polyrotaxanes can thus be a new platform for elucidating cancer cell migration and chemoresistance mechanisms.  相似文献   

14.
Lung cancer, especially adenocarcinoma, is the second most occurring and highest fatality-causing cancer worldwide. Many natural anticancer compounds, such as sesquiterpene lactones (SLs), show promising anticancer properties. Herein, we examined Lactucin, an SL from the plant Cichorium intybus, for its cytotoxicity, apoptotic-inducing, cell cycle inhibiting capacity, and associated protein expression. We also constructed a biotinylated Lactucin probe to isolate interacting proteins and identified them. We found that Lactucin stops the proliferation of A549 and H2347 lung adenocarcinoma cell lines while not affecting normal lung cell MRC5. It also significantly inhibits the cell cycle at G0/G1 stage and induces apoptosis. The western blot analysis shows that Lactucin downregulates the MAPK pathway, cyclin, and cyclin-dependent kinases, inhibiting DNA repair while upregulating p53, p21, Bax, PTEN, and downregulation of Bcl-2. An increased p53 in response to DNA damage upregulates p21, Bax, and PTEN. In an activity-based protein profiling (ABPP) analysis of A549 cell’s protein lysate using a biotinylated Lactucin probe, we found that Lactucin binds PGM, PKM, and LDHA PDH, four critical enzymes in central carbon metabolism in cancer cells, limiting cancer cells in its growth; thus, Lactucin inhibits cancer cell proliferation by downregulating the MAPK and the Central Carbon Metabolism pathway.  相似文献   

15.
16.
Redox adaptation is an important concept that explains the mechanisms by which cancer cells survive under persistent endogenous oxidative stress and become resistant to certain anticancer agents. To investigate this concept, we determined the expression levels of peroxiredoxins (Prxs), antioxidant enzymes in drug-resistant non-small cell lung carcinoma cells. Prx II was remarkably increased only in A549/GR (gefitinib-resistant) cells compared with A549 cells, consistent with methylation/demethylation. Prx II was highly methylated in the A549 cells but was demethylated in the A549/GR cells. The elevated expression of Prx II resulted in the downregulation of reactive oxygen species (ROS) and cell death and upregulation of cell cycle progression in the A549/GR cells. When Prx II mRNA in the A549/GR cells was knocked down, the levels of ROS and apoptosis were significantly recovered to the levels of the controls. In addition, signaling molecules involved in apoptosis were increased in the A549/GR-shPrx II cells. There was no difference in the expression of MAPK/ERK between the A549/GR cells and A549/GR-shPrx II cells, but the phosphorylation of JNK was increased in the A549/GR cells and was markedly decreased in the A549/GR-shPrx II cells. Colony number and tumor growth were significantly decreased in the A549/GR-shPrx II cells compared with the A549/GR cells. Our findings suggest that Prx II has an important role in cancer cell survival via the modulation of signaling molecules involved in apoptosis and the phosphorylation of JNK by the downregulation of ROS levels in A549/GR cells.  相似文献   

17.
The tunable ZnO nanorods (NRs) are produced due to the phytochemicals present in Cycas pschannae leaves which act as reducing and stabilizing agents. The confirmations of the ZnO NRs were validated using different characterization techniques: X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer, Emmett and Teller (BET), scanning electron microscopy–Energy Dispersive X-Ray Analysis (EDX), UV–visible spectroscopy, Raman spectroscopy, and transmission electron microscopy. The ZnO NRs show unique surface area and low particle size. Photocatalytic activity was measured and found to be 50.75% at low concentrations and 78.33% at high concentrations. The antioxidant activity of the ZnO NRs also showed promising results for their use in free radical scavenging. In vitro toxicity studies using zebrafish embryos was performed to evaluate the toxic nature of it and the obtained result confirmed its non-toxic nature. In addition, ZnO anticancer potential was verified using the A549 lung cancer cell line. Cytotoxic assessments of ZnO NRs were performed via 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and neutral red uptake assays to examine the cell death cycle on the A549 lung cancer cell. Dose-dependent apoptosis and necrosis were confirmed by Lactate dehydrogenase (LDH) assay. It was also confirmed that ZnO NRs induce Reactive oxygen species (ROS) and apoptosis inside cancer (A549) cells via different intrinsic gene expression. Thus, based on this research it is evident that an effective ecofriendly, nontoxic potential anticancer drug can be synthesized using C. pschannae leaf extract.  相似文献   

18.
Short-chain fatty acid (SCFA)-carbohydrate hybrid molecules that target both histone deacetylation and glycosylation pathways to achieve sugar-dependent activity against cancer cells are described in this article. Specifically, n-butyrate esters of N-acetyl-D-mannosamine (But4ManNAc, 1) induced apoptosis, whereas corresponding N-acetyl-D-glucosamine (But4GlcNAc, 2), D-mannose (But5Man, 3), or glycerol (tributryin, 4) derivatives only provided transient cell cycle arrest. Western blots, reporter gene assays, and cell cycle analysis established that n-butyrate, when delivered to cells via any carbohydrate scaffold, functioned as a histone deacetylase inhibitor (HDACi), upregulated p21WAF1/Cip1 expression, and inhibited proliferation. However, only 1, a compound that primed sialic acid biosynthesis and modulated the expression of a different set of genes compared to 3, ultimately killed the cells. These results demonstrate that the biological activity of butyrate can be tuned by sugars to improve its anticancer properties.  相似文献   

19.
Using normal canine embryonic fibroblasts (CaEF) that were shown to be senescent at passages 7th-9th, we established two spontaneously immortalized CaEF cell lines (designated CGFR-Ca-1 and -2) from normal senescent CaEF cells, and an immortal CaEF cell line by exogenous introduction of a catalytic telomerase subunit (designated CGFR-Ca-3). Immortal CGFR- Ca-1, -2 and -3 cell lines grew faster than primary CaEF counterpart in the presence of either 0.1% or 10% FBS. Cell cycle analysis demonstrated that all three immortal CaEF cell lines contained a significantly high proportion of S-phase cells compared to primary CaEF cells. CGFR-Ca-1 and -3 cell lines showed a loss of p53 mRNA and protein expression leading to inactivation of p53 regulatory function, while the CGFR-Ca-2 cell line was found to have the inactive mutant p53. Unlike the CGFR-Ca-3 cell line that down-regulated p16INK4a mRNA due to its promoter methylation but had an intact p16INK4a regulatory function, CGFR-Ca-1 and -2 cell lines expressed p16INK4a mRNA but had a functionally inactive p16INK4a regulatory pathway as judged by the lack of obvious differences in cell growth and phenotype when reconstituted with wild-type p16INK4a. All CGFR-Ca-1, -2 and -3 cell lines were shown to be untransformed but immortal as determined by anchorage-dependent assay, while these cell lines were fully transformed when overexpressed oncogenic H-rasG12V. Taken together, similar to the nature of murine embryo fibroblasts, the present study suggests that normal primary CaEF cells have relatively short in vitro lifespans and should be spontaneously immortalized at high frequency.  相似文献   

20.
As the most common cancer, colorectal cancer is the fourth leading cause of death among this malignancy disease. Surgery procedure with chemotherapy and radiotherapy for colorectal cancer treatment may cause unpleasant side effects. Therefore, prevention and early detection of the disease is important. Butyrate, a short chain fatty acid, has a protective effect against colon cancer by inhibiting cell proliferation and inducing apoptosis. We conduct a research to investigate the effect of butyrate as a possible agent to decreased mutant p53 gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号