首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
周磊  李晓亚  祝文军  王加祥  唐昌建 《物理学报》2016,65(8):85201-085201
提出一种通过诊断等离子体反冲动量来计算激光加载产生冲击压强的方法. 当强激光辐照固体靶表面时, 所产生的高速喷射的等离子体对靶具有反冲作用, 通过诊断等离子体反冲动量的变化可以计算激光辐照固体靶产生的冲击压强变化. 本文利用辐射流体力学软件研究了这种诊断方法, 模拟采用的激光功率密度为5×1012-5×1013 W/cm2, 激光脉宽选取纳秒量级. 模拟结果表明该方法是有效且可行的.  相似文献   

2.
尹传磊  王伟民  廖国前  李梦超  李玉同  张杰 《物理学报》2015,64(14):144102-144102
研究表明, 峰值强度为1022–1025 W/cm2量级的圆偏振激光脉冲的有质动力场可以直接加速并产生GeV–TeV的单能电子束, 其中被加速电子的能量与激光脉冲的峰值强度成线性定标关系. 为了获得更高能量的电子束, 通过对一维解析模型的分析得到: 如果电子束在激光传播的方向上具一个初始能量E0, 那么这种线性的定标关系可以被打破, 被加速电子束最终的能量可以被放大E0倍. 这是由于具有一定初始能量的电子束不容易被激光脉冲抛在后面, 进而获得更高的加速距离. 二维粒子模拟结果显示: 当电子束的初始能量E0为MeV量级时这个方法是有效的, 而当E0过大时这个方法失效. 这是因为当电子的加速距离远大于激光脉冲的瑞利长度时, 激光强度的衰减使得电子束的加速错过了最佳加速场.  相似文献   

3.
王子涛  周维民  邓志刚  宋尧祥 《强激光与粒子束》2022,34(11):112001-1-112001-6
采用紧聚焦的超强短脉冲激光与固体通道靶相互作用是获得大电量、高准直相对论电子束的一种有效方式。实验中由于激光预脉冲烧蚀靶壁产生预等离子体会膨胀、填充到真空通道中,从而导致电子束品质发生变化。采用二维PIC粒子模拟程序研究了通道靶中填充预等离子体的电子加速过程。模拟结果显示,在功率密度为5.0×10^(20W/cm^(2))的超强短脉冲激光条件下,通道中填充一定密度的等离子体时激光场优先与低密度等离子体相互作用,激光脉冲与通道壁的相互作用减弱,电子加速机制由纵向场主导的真空电子加速转变为横向电场主导的等离子体电子加速,产生电子束具有更大的电荷量,但能量降低,发散角增大。  相似文献   

4.
张树东  张为俊 《物理学报》2001,50(8):1512-1516
在低真空条件下(5Pa),通过测量脉冲激光烧蚀平面Al靶产生的等离子体辐射谱的时间分辨特征,得到辐射粒子速度的空间分布.在激光脉冲宽度为10ns,烧蚀斑直径为200μm,靶面上功率密度分别为1.91×1010,5.10×1010和7.64×1010W/cm2时,测得辐射粒子Al的速度均在106cm/s量级,且随着靶面径向距离的增大而近似呈指数衰减.在距靶面的相同距离处,激光功率密度的增大反而使速度减小.利用激波模型(shockwave model)较好地解释了实验结果,并得出激波的波面基本为柱对称 关键词: 激光等离子体 平面Al靶 粒子速度分布 激波  相似文献   

5.
为了克服激光加速中强流离子束空间电荷效应对粒子输运的影响,提出一种利用两块不同密度的固体靶先后和一束强度约为1022 W/cm2、脉冲长度为5T(T为激光周期)的超强脉冲激光相互作用的方案,实现了中性等离子体块的加速。通过一维PIC数值模拟研究发现,在合适的参数下,加速后的电子与质子几乎以相同的速度共同飞行长达60(为激光波长)的距离,其中质子与电子的能量分别为GeV和100 MeV量级。  相似文献   

6.
为了克服激光加速中强流离子束空间电荷效应对粒子输运的影响,提出一种利用两块不同密度的固体靶先后和一束强度约为1022 W/cm2、脉冲长度为5T(T为激光周期)的超强脉冲激光相互作用的方案,实现了中性等离子体块的加速。通过一维PIC数值模拟研究发现,在合适的参数下,加速后的电子与质子几乎以相同的速度共同飞行长达60λ(λ为激光波长)的距离,其中质子与电子的能量分别为GeV和100MeV量级。  相似文献   

7.
激光尾场加速是一种利用超强飞秒激光与气体靶作用加速电子的新型加速技术,经过40多年的发展已经日益成熟,但是重复频率相比传统加速器还有很大的差距.高重复频率加速是未来激光尾场加速的一个重要发展方向,届时气体靶给真空系统带来的负载将不可忽视,这可能会成为限制重复频率的重要因素.本文设计了一种应用于中小规模激光器的微气室喷嘴,并通过三维流体模拟对比了这种喷嘴和常用的超音速喷嘴的喷气量差异,证明它不仅能够产生和超音速喷嘴类似的密度分布,还能够大幅降低喷气量,从而减小真空系统的负载,提高重频的上限.此外,把这种微气室喷嘴应用于激光尾场加速实验中,在多条件下产生了稳定性很好的电子束.这个工作将为高重频、高稳定性的尾场加速做出贡献.  相似文献   

8.
董晓刚  盛政明  陈民  张杰 《物理学报》2008,57(12):7423-7429
利用单电子在固体靶表面准静态电磁场中运动的模型和非线性汤姆孙散射理论,研究了以大角度斜入射的强激光照射在固体靶表面产生的沿靶面方向发射的高能超热电子的运动及其产生的电磁辐射脉冲. 数值模拟表明,靶表面的电子在靶面附近的准静态电磁场和反射的激光场中作振荡. 当电子振荡频率接近激光频率时,电子被有效加速,被加速的电子主要沿靶面方向运动并产生向前的阿秒脉冲辐射. 讨论了电子在加速前的不同初始速度分布对辐射脉冲的时间和空间特性的影响,模拟了不同初始状态的多电子相干辐射脉冲的频谱特性. 关键词: 表面准静态电磁场 超热电子 阿秒脉冲 相干辐射  相似文献   

9.
对线极化、圆极化的超短超强激光脉冲与靶前有一段低密度预等离子体的固体靶的相互作用进行了理论和粒子模拟研究。激光通过有质动力加速机制加速预等离子体中的电子,研究了电子获得的最大能量随激光强度和预等离子体密度的变化。当激光脉冲与靶直接作用时,靶中的电子由于JB机制而得到加速,所获得的能量比预等离子体中电子低。研究表明,在超短超强激光脉冲与固体靶相互作用中,预等离子体的存在有利于高能电子的产生。  相似文献   

10.
利用二维PIC粒子模拟程序研究了超短超强激光脉冲与柱腔靶相互作用产生的表面超热电子加速现象。采用光强为1021 W/cm2量级的超高斯激光脉冲掠入射进入柱腔靶,在靶的内壁上观察到了GeV量级的表面超热电子。超热电子束被准静态的电场和磁场约束在内壁表面附近,保证了电子束的准直性,发散角仅为1.6;并且由于超热电子束在纵向激光电场中加速了mm级的距离,激光到高能电子(100 MeV)的转换效率达到了26.6%。另外,通过多参数模拟和理论解析讨论了激光的光强以及横向空间分布对这种表面超热电子加速的影响。  相似文献   

11.
穆洁  盛政明  郑君  张杰 《物理学报》2013,62(13):135202-135202
本文提出采用了强激光与细锥形靶作用, 产生大量定向高能电子, 用于快点火激光聚变方案研究. 通过PIC 模拟, 研究了细锥靶和激光脉冲的各项参数, 对产生高能电子的影响. 模拟发现, 细锥靶开口10° 时能够产生较多的高能电子, 当开口角度逐渐增大时, 高能电子的能量和数目都有一定程度下降. 若为细锥靶加上预等离子体, 产生的高能电子的数目将大大提高, 而最高的电子能量将会下降. 中等能量的电子加速主要由于激光有质动力加速, 而高能量的电子加速主要由于电子感应加速. 随着激光脉宽的增加, 高能电子的数量直线上升. 关键词: 细锥形靶 电子加速 感应共振加速  相似文献   

12.
利用二维粒子模拟方法,本文研究了超强激光与泡沫微结构镀层靶相互作用产生强流电子束问题.研究发现泡沫区域产生了百兆高斯级准静态磁场,形成具有选能作用的"磁势垒",强流电子束中的低能端电子在"磁势垒"的作用下返回激光作用区域,在鞘场和激光场的共同作用下发生多次加速过程,从而显著提升高能电子产额.还应用单粒子模型,分析了电子在激光场作用下的运动行为,验证了多次加速的物理机理.  相似文献   

13.
在SILEX-1激光器上测量了超强飞秒激光与Ta靶相互作用产生的出射超热电子能谱及角分布,研究了出射超热电子加热机制。激光脉宽为 30 fs,激光功率密度为8.5×1018 W/cm2。靶前法线方向超热电子温度为550 keV。从实验结果可知:共振吸收是靶前法线方向超热电子主要加热机制,这与靶前存在大密度标长预等离子体的实验条件吻合。靶厚为6~50 μm时,靶后超热电子沿法线方向出射;靶厚为2 mm时,该发射峰消失。  相似文献   

14.
超强飞秒激光与固体靶产生的超热电子加热机制   总被引:4,自引:4,他引:0       下载免费PDF全文
 在SILEX-1激光器上测量了超强飞秒激光与Ta靶相互作用产生的出射超热电子能谱及角分布,研究了出射超热电子加热机制。激光脉宽为 30 fs,激光功率密度为8.5×1018 W/cm2。靶前法线方向超热电子温度为550 keV。从实验结果可知:共振吸收是靶前法线方向超热电子主要加热机制,这与靶前存在大密度标长预等离子体的实验条件吻合。靶厚为6~50 μm时,靶后超热电子沿法线方向出射;靶厚为2 mm时,该发射峰消失。  相似文献   

15.
发散角过大是制约超强激光与固体靶相互作用加速产生高能质子束应用的一个重大物理难题.本文提出了一种结构化的通道靶型,与超强激光相互作用可提高质子束的发散特性,通道壁上产生的横向电荷分离静电场可对质子有效聚焦.采用二维particle-in-cell粒子模拟程序对激光通道靶相互作用过程进行了研究,分析了加速质子束的性能特点.模拟结果表明,与传统平面靶相比,通道靶可以在不过多损失能量的情况下产生具有更好准直性的质子束,尤其当通道靶的直径与激光焦斑尺寸和质子源尺寸相当时,横向静电场能够有效聚焦质子束,并且可保证相对较高的激光能量利用率.  相似文献   

16.
超短超强激光脉冲在气体等离子体中激发的尾波场加速在过去40年里有了长足的发展,人们已经在厘米加速距离内获得了数GeV的准单能电子加速,激光尾波加速的最高电子能量已经达到8 GeV.为了进一步提升加速电子束的稳定性和品质,多种电子注入方式先后被提出.本文研究了基于锐真空-等离子体边界面的密度跃变注入,着重讨论了不同角度的倾斜边界面对注入电子品质的影响.二维粒子模拟研究表明,与倾角为0°的垂直边界面相比,在合适的倾斜边界角下,第二个尾波空泡内产生的注入电量可以有近三倍的提升,同时偏振方向与入射面平行的驱动激光可以增加第一个空泡内注入电子的电量.根据不同激光入射角度时尾波场中电子自注入的起始位置差异,分析了电子电量与横向振荡增强的原因.这些研究有利于提升基于Betatron运动的尾波场辐射及其应用.  相似文献   

17.
黄仕华  吴锋民 《物理学报》2008,57(12):7680-7684
采用五阶修正的聚焦激光光场方程模拟研究了由Singh提出的在电子和激光脉冲作用尾部阶段施加外场的加速方案,将Singh方案中采用的外加磁场改成了外加电场,并且考虑了光束的纵向电场和光束衍射效应.模拟结果显示,电子可以从加速相位阶段被外场导入下一个加速相位阶段而不进入减速相位阶段,因此电子能获得比不加外场方案更高的净能增益. 关键词: 强激光 激光加速  相似文献   

18.
The output properties of electrons accelerated by the vacuum laser acceleration scheme CAS (capture and acceleration scenario) are addressed. The transport process of the electron bunch, the fraction of the CAS electrons of the incident electrons, the correlation of electron energy with position and scattering angle, the energy spectrum and angular distributions as well as the emittance of the outgoing electrons are studied at a laser intensity of a0=10. In addition, the effects of the laser intensity, beam width, and pulse duration on the properties of the output electrons are also examined. Physical explanations of those output characteristics are presented based on the mechanism behind the CAS scheme. The feasibility of CAS to become a realistic laser accelerator scheme is explored. PACS 41.75.Jv; 42.60.Jf; 41.85.Ja  相似文献   

19.
For the interpretation of experiments for acceleration of electrons at interaction up to nearly GeV energy in laser produced plasmas, we present a new model using interaction magnetic fields. In addition to the ponderomotive acceleration of highly relativistic electrons at the interaction of very short and very intense laser pulses, a further acceleration is derived from the interaction of these electron beams with the spontaneous magnetic fields of about 100 MG. This additional acceleration is the result of a laser-magnetic resonance acceleration (LMRA) around the peak of the azimuthal magnetic field. This causes the electrons to gain energy within a laser period. Using a Gaussian laser pulse, the LMRA acceleration of the electrons depends on the laser polarization. Since this is in the resonance regime, the strong magnetic fields affect the electron acceleration considerably. The mechanism results in good collimated high energetic electrons propagating along the center axis of the laser beam as has been observed by experiments and is reproduced by our numerical simulations. PACS 41.75.Jv; 52.38.Kd; 52.65.Cc  相似文献   

20.
We propose a new approach to high‐intensity relativistic laser‐driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward‐scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward‐scattering of a high‐intensity laser pulse in a plasma. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号