首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium salt of chloride, bromide and iodide were used to elucidate the effect of the size of the anion on the binding to pharaonis halorhodopsin and its transport during the photocycle of this retinal protein. Spectroscopic titration revealed an apparent strong binding constant of 2 mM for chloride, 0.23 mM for bromide and 5 mM for iodide. In the case of iodide a second, week binding constant of about 10 M could be estimated. This second binding constant was similar to that observed earlier for nitrate. By changing the halide ions, only the transitions in the second half of the photocycle were affected, which contained intermediates N, O, and HR'. The O to HR' transition becomes faster with increasing ion volume, meaning that the ion uptake is accelerated. This effect shows a direct correlation with the ion radius. With increasing ion concentration the N-O-HR' equilibrium changed in such a way that the accumulated O tended to decrease. This tendency was overruled in iodide, by the appearance of the second binding constant. The increasing iodide concentration, up to 100mM decreases the accumulation of the intermediate O, due to kinetic reasons, but at higher ion concentration the amount of O increases, although its decay becomes faster. This effect correlates with the appearance of the second iodide bound to the protein.  相似文献   

2.
The DNA binding domain of transposon Tn916 integrase (INT‐DBD) binds to DNA target site by positioning the face of a three‐stranded antiparallel β‐sheet within the major groove. As the negatively charged DNA directly interacts with the positively charged residues (such as Arg and Lys) of INT‐DBD, the electrostatic interaction is expected to play an important role in the dynamical stability of the protein–DNA binding complex. In the current work, the combined use of quantum‐based polarized protein‐specific charge (PPC) for protein and polarized nucleic acid‐specific charge (PNC) for DNA were employed in molecular dynamics simulation to study the interaction dynamics between INT‐DBD and DNA. Our study shows that the protein–DNA structure is stabilized by polarization and the calculated protein–DNA binding free energy is in good agreement with the experimental data. Furthermore, our study revealed a positive correlation between the measured binding energy difference in alanine mutation and the occupancy of the corresponding residue's hydrogen bond. This correlation relation directly relates the contribution of a specific residue to protein–DNA binding energy to the strength of the hydrogen bond formed between the specific residue and DNA. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Some features of a ‘matrix suppression effect’ caused by ionic surface‐active compounds under fast‐atom bombardment (FAB) liquid secondary ion mass spectrometry (LSIMS) are being revised. It is shown that abundant transfer of the glycerol matrix molecules to the gas phase does occur under FAB‐LSIMS of ionic surfactants, contrary to popular belief. This process can be obscure because of the dependence of the charge state of the glycerol‐containing cluster ions on the type of ionic surfactant. It is revealed that, while glycerol matrix signals are really completely suppressed in the positive ion mass spectra of cationic surfactants (decamethoxinum, aethonium), abundant deprotonated glycerol and glycerol‐anion clusters are recorded in the negative ion mode. In the case of an anionic surfactant (sodium dodecyl sulfate), on the contrary, glycerol is completely suppressed in the negative ion mode, but is present in the protonated and cationized forms in the positive ion mass spectra. It is suggested that such patterns of positive and negative ion FAB‐LSIMS spectra of ionic surfactants solutions reflect the structure and composition of the electric double layer formed at the vacuum‐liquid interface by organic cations or anions and their counterions. Processes leading to the formation of the glycerol‐containing ions preferentially of positive or negative charge are discussed. The most obvious of them is efficient binding of glycerol to inorganic counterions of the salts Cl? or Na+, which is confirmed by data from quantum chemical calculations. The high content of the counterions and relatively small content of glycerol in the sputtered zone may be responsible for the charge‐selective suppression of neat glycerol clusters of opposite charge to the counterions. In the case of a mixture of cationic and anionic surfactants the substitution of inorganic counterions by organic ones was observed. The dependence of the exchange rate in the surface layer is not a linear function of the bulk solution concentration, and an effect of abrupt recharging of the surface can be registered. No both positively or negatively charged pure glycerol and glycerol‐inorganic counterion clusters are recorded for the mixture. Correlations between the mass spectrometric observations and some phenomena of surface and colloid chemistry and physics are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The stability and structure of non-covalent complexes of various peptides contatining basic amino acid residues (Arg, Lys) with metalloporphyrins were studied in a quadrupole ion trap mass spectrometer. The complexes of heme and three other metalloporphyrins with a variety of basic peptides and model systems were formed via electrospray ionization (ESI) and their stability was probed by energy-variable collision-induced dissociation (CID). A linear dependence for basic peptides and model compounds/metalloporphyrin complexes was observed in the plots of stability versus degrees of freedom and was used to evaluate relative bond strength. These results were then compared with previous data obtained for complexes of metalloporphyrins with His-containing peptides and peptides containing no basic amino acids. The binding strengths of Lys-containing peptide complexes in the gas phase was found to be almost as strong as that of Arg-containing complexes. Both systems showed stronger binding than His- containing peptides studied previously. To probe the structure of Arg and Lys non-covalent complexes (charge solvation versus salt bridges), two techniques, CID and ionmolecule reactions, were used. CID experiments indicate that the gas-phase complexes are most likely formed by charge solvation of the central metal ion in the metalloporphyrin by basic side chains of Arg or Lys. Results from the ionmolecule reaction studies are consistent with the charge solvation structure as well.  相似文献   

5.
We present here the effect of firefly luciferase surface charge saturation and the presence of some additives on its thermal‐induced aggregation. Three mutants of firefly luciferase prepared by introduction of surface Arg residues named as 2R, 3R and 5R have two, three and five additional arginine residues substituted at their surface compared to native luciferase; respectively. Turbidimetric study of heat‐induced aggregation indicates that all three mutants were reproducibly aggregated at higher rates relative to wild type in spite of their higher thermostability. Among them, 2R had most evaluated propensity to heat‐induced aggregation. Therefore, the hydrophilization followed by appearing of more substituted arginine residues with positive charge on the firefly luciferase surface was not reduced its thermal aggregation. Nevertheless, at the same condition in the presence of charged amino acids, e.g. Arg, Lys and Glu, as well as a hydrophobic amino acid, e.g. Val, the heat‐induced aggregation of wild type and mutants of firefly luciferases was markedly decelerated than those in the absence of additives. On the basis of obtained results it seems, relinquishment of variety in charge of amino acid side chains, they via local interactions with proteins cause to decrease rate and extent of their thermal aggregation.  相似文献   

6.
Anion exchange membranes containing N‐isopropylacrylamide as a component were prepared, and their electrochemical properties were examined. The membranes were crosslinked with ethylene glycol dimethacrylate and contained weakly basic or strongly basic anion exchange groups. The dependence of electrochemical properties of the membranes (electrical resistance, transport number of anions, water content, and reduced osmotic flux) on temperature was completely different from those of the anion exchange membrane without N‐isopropylacrylamide. For example, the reduced osmotic flux decreased with increasing temperature until 40°C, and the transport number of chloride ions increased with increasing temperature from 25.0°C, although those of the conventional membrane monotonously increased or decreased. The transport numbers of various anions relative to chloride ions in electrodialysis were evaluated at a different temperature. Although the transport numbers between anions did not change appreciably in the conventional membrane with temperature, those of the anion exchange membranes with N‐isopropylacrylamide changed with a temperature dependent on the hydration degree of anions: permeation of less‐hydrated anions such as nitrate and bromide ions compared with chloride ions increased with increasing temperature, and that of strongly hydrated anions such as sulfate and fluoride ions decreased with increasing temperature. This is based on the increase or decrease in uptake of the anions in the membrane with the change in temperature because hydrophilicity of the membranes changes with temperature due to the apparent aggregation of isopropyl groups in the membranes. And the change in electrochemical properties and transport numbers of various anions relative to chloride ions with temperature was completely reversible with increasing or decreasing temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 793–804, 1999  相似文献   

7.
The RHO gene encodes the G‐protein‐coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light‐activated state by solution and MAS‐NMR spectroscopy. We found two long‐lived dark states for the G90D mutant with the 11‐cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11‐cis retinal caused by the mutation‐induced distortion on the salt bridge formation in the binding pocket. Time‐resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle.  相似文献   

8.
Allosteric regulation promises to open up new therapeutic avenues by increasing drug specificity at G‐protein‐coupled receptors (GPCRs). However, drug discovery efforts are at present hampered by an inability to precisely control the allosteric site. Herein, we describe the design, synthesis, and testing of PhotoETP, a light‐activated positive allosteric modulator of the glucagon‐like peptide‐1 receptor (GLP‐1R), a class B GPCR involved in the maintenance of glucose homeostasis in humans. PhotoETP potentiates Ca2+, cAMP, and insulin responses to glucagon‐like peptide‐1 and its metabolites following illumination of cells with blue light. PhotoETP thus provides a blueprint for the production of small‐molecule class B GPCR allosteric photoswitches, and may represent a useful tool for understanding positive cooperativity at the GLP‐1R.  相似文献   

9.
This paper describes an improved method for the sequence analysis of Arg‐containing glycopeptide by MALDI mass spectrometry (MS). The method uses amino group derivatization (4‐aza‐6‐(2,6‐dimethyl‐1‐piperidinyl)‐5‐oxohexanoic acid N‐succinimidyl ester) and removal (carboxypeptidase B) or modification (peptidylarginine deiminase 4) of the arginine residue of the peptide. The derivatization attaches a basic tertiary amine moiety onto the peptides, and the enzymatic treatment removes or modifies the arginine residue. Fragmentation of the resulting glycopeptide under low‐energy collision‐induced dissociation yielded a simplified ion series of both the glycan and the peptide that can facilitate their sequencing. The feasibility of the method was studied using α1‐acid glycoprotein‐derived N‐linked glycopeptides, and glycan and peptide in each glycopeptide were successfully sequenced by MALDI tandem MS (MS/MS). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A potentiometric sensor for studying charge based adsorption of proteins was created using a single‐piece polyaniline‐PVC ion‐selective electrode (ISE). Three different ISEs, two for Na+ and one for Cl? ion determination, were studied. The Na+‐ISEs consisted of a neutral calixarene‐based ionophore and one with a charged carrier dinonylnapthalenesulfonic acid (DNNSA) whereas for the Cl? ISE, an anion exchanger tridodecylmethylammonium chloride (TDDMA+Cl?), was used. The Na+ ISE with DNNSA as the charged carrier was successfully able to discriminate the binding of two different proteins (bovine serum albumin and lysozyme) based on their intrinsic charge.  相似文献   

11.
A new class of nonpeptidic inhibitors of the ZnII‐dependent metalloprotease neprilysin with IC50 values in the nanomolar activity range (0.034–0.30 μM ) were developed based on structure‐based de novo design (Figs. 1 and 2). The inhibitors feature benzimidazole and imidazo[4,5‐c]pyridine moieties as central scaffolds to undergo H‐bonding to Asn542 and Arg717 and to engage in favorable ππ stacking interactions with the imidazole ring of His711. The platform is decorated with a thiol vector to coordinate to the ZnII ion and an aryl residue to occupy the hydrophobic S1′ pocket, but lack a substituent for binding in the S2′ pocket, which remains closed by the side chains of Phe106 and Arg110 when not occupied. The enantioselective syntheses of the active compounds (+)‐ 1 , (+)‐ 2 , (+)‐ 25 , and (+)‐ 26 were accomplished using Evans auxiliaries (Schemes 2, 4, and 5). The inhibitors (+)‐ 2 and (+)‐ 26 with an imidazo[4,5‐c]pyridine core are ca. 8 times more active than those with a benzimidazole core ((+)‐ 1 and (+)‐ 25 ) (Table 1). The predicted binding mode was established by X‐ray analysis of the complex of neprilysin with (+)‐ 2 at 2.25‐Å resolution (Fig. 4 and Table 2). The ligand coordinates with its sulfanyl residue to the ZnII ion, and the benzyl residue occupies the S1′ pocket. The 1H‐imidazole moiety of the central scaffold forms the required H‐bonds to the side chains of Asn542 and Arg717. The heterobicyclic platform additionally undergoes π‐π stacking with the side chain of His711 as well as edge‐to‐face‐type interactions with the side chain of Trp693. According to the X‐ray analysis, the substantial advantage in biological activity of the imidazo‐pyridine inhibitors over the benzimidazole ligands arises from favorable interactions of the pyridine N‐atom in the former with the side chain of Arg102. Unexpectedly, replacement of the phenyl group pointing into the deep S1′ pocket by a biphenyl group does not enhance the binding affinity for this class of inhibitors.  相似文献   

12.
This study presents electrostatically self‐assembled nanoparticles from linear flexible polyelectrolytes (poly(diallyldimethylammonium chloride or quarternized poly(4‐vinylpyridine)) and an ionic photo‐isomerizable azo dye (Acid Yellow 38) that can change their size upon UV‐light irradiation. Assemblies with narrow size distribution are stable in aqueous solution. For samples with under‐stoichiometric dye load, UV‐light exposure triggers a size decrease, e.g. from a hydrodynamic radius of Rh = 94 nm to Rh = 62 nm for an Ay38‐PDADMAC sample with a charge ratio of lcharge = 0.7. Size changes are caused by trans‐cis isomerization of the dye, accompanied by a change in hydrophilicity, binding enthalpy and entropy. Assemblies are characterized by static and dynamic light scattering, atomic force microscopy, UV–vis spectroscopy and isothermal titration calorimetry. Zeta potential measurements give insight into the electrostatic stabilization and size‐control of the ionic nano‐assemblies, revealing a master curve of effective surface charge density versus hydrodynamic radius. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys., 2013  相似文献   

13.
The mutant T203V of the light driven chloride pump halorhodopsin from Halobacterium salinarum was crystallized and the X-ray structure was solved at 1.6 angstroms resolution. The T203V structure turned out to be nearly identical to the wild type protein with a root mean square deviation of 0.43 angstroms for the carbon alpha atoms of the protein backbone. Two chloride binding (CB) sites were demonstrated by a substitution of chloride with bromide and an analysis of anomalous difference Fourier maps. The CB1 site was found at the same position as in the wild type structure. In addition, a second chloride binding site CB2 was identified around Q105 due to higher resolution in the mutant crystal. As T203V showed a 10 times slower decay of its photocycle intermediate L, this intermediate could be trapped with an occupancy of 60% upon illumination at room temperature and subsequent cooling to 120 degrees K. Fourier transform infrared spectroscopy clearly identified the crystal to be trapped in the L1 intermediate state and the X-ray structure was solved to 1.9 angstroms resolution. In this intermediate, the chloride moved by 0.3 angstroms within binding site CB1 as indicated by peaks in difference Fourier density maps. The chloride in the second binding site CB2 remained unchanged. Thus, intraproteinous chloride translocation from the extracellular to the cytoplasmic part of the protein must occur in reaction steps following the L1 intermediate in the catalytic cycle of halorhodopsin.  相似文献   

14.
Chiral molecules frequently remain undistinguishable using ion mobility mass spectrometry (IM‐MS), due to insufficient differences of their collision cross sections at the available mobility resolution of the ion mobility drift tubes. The influence of the complexation with organic acids on the ion mobility separation of peptide epimers is evaluated using traveling‐wave ion mobility (TWIMS). The examined epimeric tripeptides containing Arg residue with the sequence: Ac‐Phe‐Arg‐Trp‐NH2 formed stable complexes in the gas phase, and under the increased pressure in ion mobility drift tube, noncovalent associates formed with carboxylic or sulfonic monoacids and diacids with chiral variation of certain acids. Overall, the complexation with an acid leads to the improvement in stereodifferentiation among epimeric peptides, in comparison to the analysis of pure epimers. Detailed characterization of peptide epimer‐acid associates obtained for dibenzoyl‐D‐tartaric acid by theoretical calculations and collisional dissociation studies revealed that the presence of multiple hydrogen bonding interactions between carboxylate anions and hydrogens from N―H of both the guanidinium group of arginine and the indole of tryptophan, as well as the amide backbone hydrogens in the peptide, is responsible for stability of acid‐peptide complexes and for their differentiation in the ion mobility drift tube. The specificity of complex formation toward Arg was determined in terms of complex stability. Based on the reported results, we present general conclusions regarding the utility of the acid‐based complexation in the separation of peptide isomers.  相似文献   

15.
We investigate by X‐ray crystallographic techniques the cryotrapped states that accumulate on controlled illumination of the blue light photoreceptor, photoactive yellow protein (PYP), at 110 K in both the wild‐type species and its E46Q mutant. These states are related to those that occur during the chromophore isomerization process in the PYP photocycle at room temperature. The structures present in such states were determined at high resolution, 0.95–1.05Å. In both wild type and mutant PYP, the cryotrapped state is not composed of a single, quasitransition state structure but rather of a heterogeneous mixture of three species in addition to the ground state structure. We identify and refine these three photoactivated species under the assumption that the structural changes are limited to simple isomerization events of the chromophore that otherwise retains chemical bonding similar to that in the ground state. The refined chromophore models are essentially identical in the wild type and the E46Q mutant, which implies that the early stages of their photocycle mechanisms are the same.  相似文献   

16.
Heteroditopic hexahomotrioxacalix[3]arene receptors that are capable of binding an anion and a cation simultaneously in a cooperative fashion were synthesized. The structure of one of the triamide derivatives was confirmed by single‐crystal X‐ray diffraction. The binding of alkali metals at the lower rim, and the binding of anions (chloride, bromide) at the upper rim, has been investigated by using 1H NMR titration experiments. Alkali metal binding at the lower rim controls the calix cavity. Li+‐ion binding to the lower rim can improve the binding ability of anions at the upper rim amide moiety by a factor of 15, thus suggesting a strong positive allosteric effect for anion recognition. However, when a Na+ cation is bound to the ionophoric site on the lower rim, the calix cavity is changed from a “flattened cone” to a more‐upright form, which is favored for intramolecular hydrogen bonding between the neighboring NH and C?O groups; this change can block the inclusion of anions onto the amide moiety at the upper rim, which strongly suggests a negative allosteric effect of Na+‐ion binding, which controls the cooperative recognition system.  相似文献   

17.
Luciferin regenerating enzyme (LRE) contributes to in vitro recycling of d ‐luciferin to produce persistent and longer light emission by luciferase. Luciferin binding domains I and II among LREs regarded as potential candidates for luciferin‐binding sites. In this study, for the first time, amino acids T69, G75 and K77 located at luciferin binding domain I of LRE from L. turkestanicus (T‐LRE) substituted by using site‐directed mutagenesis. Single mutant T69R increased luciferase light output more than two‐fold over a longer time in comparison with a wild‐type and other mutants of T‐LRE. Nevertheless, double mutant (K77E/T69R) increased the amount of bioluminescent signal more than two‐fold over a short time. In addition, G75E, K77E and G75E/T69R mutants did not improve luciferin–luciferase in vitro bioluminescence. Based on our results, addition of K77E/G75E and K77E/G75E/T69R mutants caused intermediate changes in bioluminescence from in vitro luciferin–luciferase reaction. These findings indicated that the amino acids in question are possible to be located within T‐LRE active site. It may also be suggested that substituted Arg69 (Arg218) plays an important role in luciferin binding and the existence of Gly75 as well as Lys77 is essential for T‐LRE which has already evolved to have different functions in nature.  相似文献   

18.
The role of formaldehyde (HCHO) in vegetable‐aldehyde–collagen cross‐linking reaction was investigated at the B3LYP/6‐31+G(d) level, where lysine (LYS) was used as model of collagen and catechin (EC) as model of condensed vegetable tannin. Atomic charge and Frontier molecular orbital analysis show that intermediates formed by HCHO reacting with LYS or EC, that is, MLYS, MEC‐6, and MEC‐8, still have both nucleophilic and electrophilic sites, which are elements to form ternary cross‐linking in vegetable‐aldehyde–collagen system. The analysis of energy gap between HOMO (highest occupied molecular orbit) and LUMO (lowest unoccupied molecular orbit) indicate that the intermediate of HCHO–LYS residues (MLYS) can further react with free HCHO to form product P‐N(CH2OH)2 (P‐N‐represents amino acid residue; N represents nitrogen atom on side chain), but the reaction of intermediate MLYS with free EC is difficult to take place. So, the probability of forming ternary cross‐linking structure of amino acid residue–HCHO–EC is small, if HCHO is added before vegetable tannin in vegetable‐aldehyde–collagen system. However, the reactions of EC–HCHO intermediates (MEC‐6 and MEC‐8) with free amino acids, HCHO–amino acid residue intermediate (MLYS), as well as with other EC–HCHO intermediates (MEC‐6 and MEC‐8), are very easy to take place. The reaction enthalpy also shows that the cross‐linking tendency is favorable in thermodynamics. So, it can be deduced that covalent cross‐linking among amino side chain of collagen and vegetable tannin may take place when aldehyde is added after vegetable tannin. In this way, a multiple point cross‐linking reaction occurs to create a high stabilization of collagen. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Halorhodopsin (HR) is a transmembrane seven-helix retinal protein, and acts as an inward light-driven Cl pump. HR from Natronomonas pharaonis (NpHR) can be expressed in Escherichia coli inner membrane in large quantities. Here, we showed that NpHR forms the trimer structure even in the presence of 0.1% (2 m m ) to 1% (20 m m ) dodecyl-β- d -maltoside (DDM), whose concentrations are much higher than the critical micelle concentration (0.17 m m ). This conclusion was drawn from the following observations. (1) NpHR in the DDM solution showed an exciton-coupling circular dichroism (CD) spectrum. (2) From the elution volume of gel filtration, the molecular mass of the NpHR–DDM complex was estimated. After evaluation of the mass of the bound DDM molecules, the mass of NpHR calculated was approximately equal to that of the trimer. (3) The cross-linked NpHR by glutaraldehyde gave the SDS-PAGE corresponding to the trimer. Mass spectra of these samples also support the notion of the trimer. Using the membrane fractions expressing NpHR ( Escherichia coli and Halobacterium salinarum ), CD spectra showed exciton-coupling, which suggests strongly the trimer structure in the cell membrane.  相似文献   

20.
Abstract Melittin and its site-specific mutants differentially delay the slow-decaying component of the photocycle intermediate M412 of bacteriorhodopsin in the purple membrane and the acetylated purple membrane whose several lysine residues are modified. This effect is attributed to the interaction of the total positive charges of melittin or its mutants with the total negative charges of bacteriorhodopsin. The effects of melittin and its mutants on the Triton X-100–solubilized bacteriorhodopsin monomers are somewhat complicated but are associated with their charges. These results show that there is electrostatic interaction between bacteriorhodopsin and melittin and that both N-and C-termini of melittin function as sites of the interaction, with Arg 22 and Arg 24 making a prominent contribution to the effective surface charge of melittin. Melittin, at certain concentrations, partially restores the decreased photoactivity of the bacteriorhodopsin monomers trapped in the Triton-lipid-protein mixed micelles, which suggests that melittin may compete with Triton X-100 for the binding sites on the bacteriorhodopsin monomers. Other kinds of interactions between bacteriorhodopsin and melittin are also indicated. The possible states of melittin in membranes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号