首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theory of the Zeeman effect for electrons in one-and zero-dimensional semiconductor heterostructures is developed. A relation is established between the number of linearly independent components of the g-factor tensor and the point symmetry of a low-dimensional system. A specific calculation is performed for a spherical quantum dot and a cylindrical wire. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 1, 41–45 (10 January 1998)  相似文献   

2.
3.
The results of a study into the photoluminescence spectra of a set of quantum dots based on GaAs enclosed in AlGaAs nanowires are presented. The steady state and time resolved spectra of photoluminescence under optical excitation both from an array of quantum wires/dots and a single quantum wire/dot have been measured. In the photoluminescence spectra of single quantum dots, emission lines of excitons, biexcitons and tritons have been found. The binding energy of the biexciton in the studied structures was deduced to be 8 meV.  相似文献   

4.
By placing changeable nanofabricated structures (wires, dots, etc.) on an atom mirror one can design guiding and trapping potentials for atoms. These potentials are similar to the electrostatic potentials which trap and guide electrons in semiconductor quantum devices like quantum wires and quantum dots. This technique will allow the fabrication of nanoscale atom optical devices. Received: 28 October 1997 / Revised: 17 February 1998 / Accepted: 17 July 1998  相似文献   

5.
The energy spectrum and corresponding wave functions of a flat quantum dot with elliptic symmetry are obtained exactly. A detailed study is made of the effect of ellipticity on the energy levels and the corresponding wave functions. The analytical behavior of the energy levels in certain limiting cases is obtained.  相似文献   

6.
We describe photoluminescence measurements made on mesa geometry quantum dots and wires with exposed side walls fabricated by laterally patterning undoped GaAs/AlGaAs quantum wells using electron beam lithography and dry etching. At low temperature the photoluminescence efficiency of many but not all of the GaAs quantum dot arrays scales with the volume of quantum well material down to lateral dimensions of 50nm. This behaviour contrasts with that found in wires produced at the same time where the intensity falls off rapidly with decreasing wire width for dimensions below 500nm but is recovered by overgrowth with indium tin oxide, possibly as a result of strain. Narrow overgrown wires exhibit anisotropy in polarized excitation spectra which is discussed in relation to strain and lateral confinement effects.  相似文献   

7.
Hartree-Fock approximation of bipolaron state in quantum dots and wires   总被引:1,自引:0,他引:1  
The bipolaronic ground state of two electrons in a spherical quantum dot or a quantum wire with parabolic boundaries is studied in the strong electron-phonon coupling regime. We introduce a variational wave function that can conveniently conform to represent alternative ground state configurations of the two electrons, namely, the bipolaronic bound state, the state of two individual polarons, and two nearby interacting polarons confined by the external potential. In the bipolaron state the electrons are found to be separated by a finite distance about a polaron size. We present the formation and stability criteria of bipolaronic phase in confined media. It is shown that the quantum dot confinement extends the domain of stability of the bipolaronic bound state of two electrons as compared to the bulk geometry, whereas the quantum wire geometry aggravates the formation of stable bipolarons.  相似文献   

8.
We developed semiclassical method and show that any smooth potential in graphene describing elongated a quantum dot or wire may behave as a barrier or as a trapping well or as a double barrier potential, Fabry–Perot structure, for 1D Schrödinger equation. The energy spectrum of quantum wires has been found and compared with numerical simulations. We found that there are two types of localized states, stable and metastable, having finite life time. These life times are calculated, as is the form of the localized wave functions which are exponentially decaying away from the wire in the perpendicular direction.  相似文献   

9.
We propose and demonstrate a novel technique for the fabrication of quantum dot (QD) structures using metal organic chemical vapor deposition (MOCVD). The GaAs quantum dots are grown at the bottom of the two-dimensional V-groove (2DVG) structures which are composed of (1 1 1)A and (1 1 1)B-facets on GaAs(1 0 0). The 2DVG is formed by MOCVD selective growth on a SiO2 patterned substrate. It should be noted that the 2DVGs cannot be formed by a chemical wet etching technique because the facet's anisotropy of etching ratios are different. By changing the growth condition, we can obtain GaAs QD structures which have a size of less than 10 nm, and vertical GaAs quantum wires (V-QWRs) in 2DVGs. We have observed photoluminescence from each structure. We have also demonstrated stacking of GaAs QDs in the 2DVG on GaAs (1 0 0).  相似文献   

10.
We show that quantum dots and quantum wires are formed underneath metal electrodes deposited on a planar semiconductor heterostructure containing a quantum well. The confinement is due to the self-focusing mechanism of an electron wave packet interacting with the charge induced on the metal surface. Induced quantum wires guide the transfer of electrons along metal paths and induced quantum dots store the electrons in specific locations of the nanostructure. Induced dots and wires can be useful for devices operating on the electron spin. An application for a spin readout device is proposed.  相似文献   

11.
Magneto-optical properties and resonant Raman spectroscopy of modulation doped GaAs-AlGaAs quantum well wires are reported. Their properties are compared with similar undoped quantum well wires to investigate the many electron effects in nanostructures. In undoped samples, the quantised energy levels observed by luminescence excitation spectroscopy are in good agreement with a particle-in-a-box model. In doped samples, the carrier confinement is explicitly revealed by magneto-luminescence and depolarised resonant Raman scattering. The calculated spectra in a Hartree model are in reasonable agreement with experiment.PACS: 78.66.Fd, 78.30.Fs, 78.55.Cr, 73.20.Dx  相似文献   

12.
In the past two decades, semiconductor quantum dots and wires have developed into new, promising classes of materials for next‐generation lighting and display systems due to their superior optical properties. In particular, exciton–exciton interactions through nonradiative energy transfer in hybrid systems of these quantum‐confined structures have enabled exciting possibilities in light generation. This review focuses on the excitonics of such quantum dot and wire emitters, particularly transfer of the excitons in the complex media of the quantum dots and wires. Mastering excitonic interactions in low‐dimensional systems is essential for the development of better light sources, e.g., high‐efficiency, high‐quality white‐light generation; wide‐range color tuning; and high‐purity color generation. In addition, introducing plasmon coupling provides the ability to amplify emission in specially designed exciton–plasmon nanostructures and also to exceed the Förster limit in excitonic interactions. In this respect, new routes to control excitonic pathways are reviewed in this paper. The review further discusses research opportunities and challenges in the quantum dot and wire excitonics with a future outlook.  相似文献   

13.
The bleaching bands have been observed in the time-resolved nonlinear transmission spectra of porous silicon. The increase of transmission at discrete frequencies has been attributed to a saturation of optical transitions between the energy levels of electrons and holes spatially confined within quasi-zero-dimensional (quantum dots) and quasi-one-dimensional (quantum wires) nanostructures. The results of independent measurements using transmission electron microscopy have confirmed the existence of quantum dots and wires of corresponding size. The slowed-down energy relaxation from upper to lower levels of size quantization compared with intraband relaxation in the bulk have been observed in the cooled (80K) platelets of porous silicon.  相似文献   

14.
Transient photoluminescence of GaAs/AlGaAs quantum wires and quantum dots formed by strain confinement is studied as a function of temperature. At low temperature, luminescent decay times of the wires and dots correspond to the radiative decay times of localized excitons. The radiative decay time can be either longer or shorter than that of the host quantum well, depending on the size of the wires and dots. For small wires and dots (∼ 100 nm stressor), the exciton radiative recombination rate increases due to lateral confinement. Exciton localization due to the fluctuation of quantum well thickness plays an important role in the temperature dependence of luminescent decay time and exciton transfer in quantum wire and dot structures up to at least ∼ 80 K. Lateral exciton transfer in quantum wire and dot structures formed by laterally patterning quantum wells strongly affects the dynamics of wire and dot luminescence. The relaxation time of hot excitons increases with the depth of strain confinement, but we find no convincing evidence that it is significantly slower in quasi 1-D or 0-D systems than in quantum wells.  相似文献   

15.
16.
Effects of the electric field on the rheology, electrorheological (ER) effects, are investigated on carbon, barium titanate (BaTiO3) and BaTiO3-coated nickel (BT-Ni) suspensions. Among some electroreological properties, electric field frequency dependence of the induced shear stress (yield stress) observed for three suspensions shows a contrasting behavior. With increase in the electric field frequency, the yield stress decreases above 100 Hz in the carbon suspension, monotonously increases in the BaTiO3 suspension, and is almost constant in the BT-Ni suspension. The difference in the frequency dependence and magnitude of the yield stress is discussed on the basis of the magnitude and relaxation time of the interfacial polarization and the effect of the particle rotation under the shear flow.  相似文献   

17.
Adler  F.  Burkard  M.  Schweizer  H.  Binder  E.  Hallstein  S.  Klein  W.  Tr&#;nkle  G.  Weimann  G. 《Il Nuovo Cimento D》1995,17(11):1333-1337
Il Nuovo Cimento D - The cooling of photoexcited hot carriers in 2D, 1D and 0D systems is studied experimentally. In comparison with a theoretical carrier relaxation model which holds for 2D and 1D...  相似文献   

18.
19.
Based on the results of experimental studies, it is shown that, when the effect of size quantization on the vibratory properties of CdS nanocrystals is insignificant, the absorption spectra of nanocomposites containing CdS quantum wires and quantum dots exhibit not only the peak associated with the transverse optical phonons but also two other pronounced peaks associated with electrostatic vibration modes. When the size of nanocrystals is so small that the effect of size quantization cannot be neglected, the structure of the reflection and transmission spectra becomes much more complicated because of the contribution of the mixed longitudinal-transverse phonon modes.  相似文献   

20.
李红  孔小均 《中国物理》2004,13(5):759-764
A simple method for calculating the free-exciton binding energies in the fractional-dimensional-space model for single-quantum-well structure has been extended to quantum-well wires and quantum dots, in which the real anisotropic system is modelled through an effective isotropic environment with a fractional dimension. In this scheme, the fractional-dimensional parameter is chosen via an analytical procedure and involves no ansatz. We calculated the ground-state binding energies of excitons and donors in quantum-well wires with rectangular cross sections. Our results are found to be in good agreement with previous variational calculations and available experimental measurements. We also discussed the ground-state exciton binding energy changing with different shapes of quantum-well wires,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号