首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of Mo(2)Cl(4)(dppm)(2) (dppm = bis(diphenylphosphino)methane) with 6 equiv of [n-Bu(4)N][CN] or [Et(4)N][CN] in dichloromethane yields [n-Bu(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (1) and [Et(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (2), respectively. The corresponding one- and two-electron oxidation products [n-Bu(4)N][Mo(2)(CN)(6)(dppm)(2)] (3) and Mo(2)(CN)(6)(dppm)(2) (4)were prepared by reactions of 1 with the oxidant NOBF(4). Single-crystal X-ray structures of 2.2CH(3)CN, 3.2CH(3)CN.2H(2)O, and 4.2CH(3)NO(2) were performed, and the results confirmed that all three complexes contain identical ligand sets with trans dppm ligands bisecting the Mo(2)(mu-CN)(2)(CN)(4) equatorial plane. The binding of the bridging cyanide ligands is affected by the oxidation state of the dimolybdenum core as evidenced by an increase in side-on pi-bonding overlap of the mu-CN in going from 1 to 4. The greater extent of pi-donation into Mo orbitals is accompanied by a lengthening of the Mo-Mo distance (2.736(1) A in Mo(2)(II,II) (2), 2.830(1) A in Mo(2)(II,III) (3), and 2.936(1) A in Mo(2)(III,III) (4)). A computational study of the closed-shell members of this homologous series, [Mo(2)(CN)(6)(dppm)(2)](n)() (n = 2-, 0), indicates that the more pronounced side-on pi-donation evident in the X-ray structure of 4 leads to significant destabilization of the delta orbital and marginal stabilization of the delta() orbitals with respect to nearly degenerate delta and delta orbitals in the parent compound, 2. The loss of delta contributions combined with the reduced orbital overlap due to higher charges on molybdenum centers in oxidized complexes 3 and 4 is responsible for the observed increase in the length of the Mo-Mo bond.  相似文献   

2.
The reaction of Ni(3)(dppm)(3)(micro(3)-I)(2)) with sodium trichlorostannate affords the first tin-capped nickel cluster Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(3) (1). A site of coordinative unsaturation at tin can be introduced by the reaction of 1 with Tl[PF(6)] yielding the stannylene-capped cluster [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(2)](+) (2). Clusters 1 and 2 were characterized by 31P NMR, X-ray diffraction, and cyclic voltammetry (CV). Clusters 1 and 2 exhibit single electron redox chemistries, [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl3](0/*-), [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(2)](+/0), that together comprise a redox equilibrium. Thus, electrochemical reduction of 1 produces first the 49e- cluster radical anion [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(3)](*-) which then yields the reduced form of 2, [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(2)], upon chloride dissociation.  相似文献   

3.
A series of novel mixed ligand dinickel complexes of the type [Ni(II)(2)L(μ-L')](+), where L' is a tetrahedral oxo-alkoxo vanadate (L' = [O(2)V(V)(OR)(2)](-), R = H or alkyl) and L a macrocyclic N(6)S(2) supporting ligand, have been prepared, and their esterification reactivity has been studied. The orthovanadate complex [Ni(2)L(μ-O(2)V(OH)(2))](+) (2), prepared by reaction between [Ni(2)L(μ-Cl)]ClO(4) with Na(3)VO(4) and a phase transfer reagent in CH(3)CN, reacts smoothly with MeOH and EtOH forming the vanadate diesters [Ni(2)L(μ-O(2)V(OMe)(2))](+) (3) and [Ni(2)L(μ-O(2)V(OEt)(2))](+) (4). The dialkyl orthovanadate esters in 3 and 4 are readily transesterified with mono- and difunctional alcohols. Complex 3 can also be generated from 4 by transesterification with MeOH. Complexes 3 and 4 react with diols (ethylene glycol, propylene glycol and diethylene glycol) as well to afford the complexes [Ni(2)L(μ-O(2)V(OH)(OCH(2)CH(2)OH))](+) (5), [Ni(2)L(μ-O(2)V(OCH(2))(2)CH(2))](+) (6), and [Ni(2)L(μ-O(2)V(OCH(2)CH(2))(2)O)] (7). The crystal structures of the tetraphenylborate salts of complexes 3-7 reveal in each case four-coordinate O(2)V(V)(OR)(2)(-) groups bonded in a μ(1,3)-bridging mode to generate trinuclear complexes with a central N(3)Ni(μ-S)(2)(μ(1,3)-O(2)V(OR)(2))NiN(3) core. The stabilization of the four-coordinate V(V)O(2)(OR)(2)(-) moieties is a consequence of both the two-point coordinative fixation to and the steric protection of the bowl-shape binding pocket of the [Ni(2)L](2+) fragment. Cyclic voltammetry experiments reveal that the encapsulated vanadate esters are not reduced in a potential window of -2.0 to +2.5 V vs SCE. The spins of the nickel(II) (S(i) = 1 ions) in 3 are weakly ferromagnetically coupled (J = +23 cm(-1), (H = -2JS(1)S(2))) to produce an S = 2 ground state.  相似文献   

4.
From the reaction of Ni(COD)(2) (COD = cyclooctadiene) in dry diethylether with 2 equiv of 2-phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene (L(Ox))(0) under an Ar atmosphere, dark red, diamagnetic microcrystals of [Ni(II)(L*)(2)] (1) were obtained where (L*)(1-) represents the pi radical anion of neutral (L(Ox))(0) and (L(Red))(2-) is the closed shell, doubly reduced form of (L(Ox))(0). Oxidation of 1 with 1 equiv of ferrocenium hexafluorophosphate in CH(2)Cl(2) yields a paramagnetic (S = 1/2), dark violet precipitate of [Ni(I)(L(Ox))(2)](PF(6)) (2) which represents an oxidatively induced reduction of the central nickel ion. From the same reaction but with 2 equiv of [Fc](PF(6)) in CH(2)Cl(2), light green crystals of [Ni(II)(L(Ox))(2)(FPF(5))](PF(6)) (3) (S = 1) were obtained. If the same reaction was carried out in tetrahydrofuran, crystals of [Ni(II)(L(Ox))(2)(THF)(FPF(5))](PF(6)) x THF (4) (S = 1) were obtained. Compounds 1, 2, 3, and 4 were structurally characterized by X-ray crystallography: 1 and 2 contain a tetrahedral neutral complex and a tetrahedral monocation, respectively, whereas 3 contains the five-coordinate cation [Ni(II)(L(Ox))(2)(FPF(5))](+) with a weakly coordinated PF(6)(-) anion and in 4 the six-coordinate monocation [Ni(II)(L(Ox))(2)(THF)(FPF(5))](+) is present. The electro- and magnetochemistry of 1-4 has been investigated by cyclic voltammetry and SQUID measurements. UV-vis and EPR spectroscopic data for all compounds are reported. The experimental results have been confirmed by broken symmetry DFT calculations of [Ni(II)(L*)(2)](0), [Ni(I)(L(Ox))(2)](+), and [Ni(II)(L(Ox))(2)](2+) in comparison with calculations of the corresponding Zn complexes: [Zn(II)((t)L(Ox))(2)](2+), [Zn(II)((t)L(Ox))((t)L*)](+), [Zn(II)((t)L*)(2)](0), and [Zn(II)((t)L*)((t)L(Red))](-) where ((t)L(Ox))(0) represents the neutral ligand 1,4-di-tert-butyl-1,4-diaza-1,3-butadiene and ((t)L*)(1-) and ((t)L(Red))(2-) are the corresponding one- and two-electron reduced forms. It is clearly established that the electronic structures of both paramagnetic monocations [Ni(I)(L(Ox))(2)](+) (S = 1/2) and [Zn(II)((t)L(Ox))((t)(L*)](+) (S = 1/2) are different.  相似文献   

5.
The reaction of three different 1-phenyl and 1,4-diphenyl substituted S-methylisothiosemicarbazides, H(2)[L(1-6)], with Ni(OAc)(2).4H(2)O in ethanol in the presence of air yields six four-coordinate species [Ni(L(1-6)(*))(2)] (1-6) where (L(1-6)(*))(1-) represent the monoanionic pi-radical forms. The crystal structures of the nickel complexes with 1-phenyl derivatives as in 1 reveal a square planar structure trans-[Ni(L(1)(-3)(*))(2)], whereas the corresponding 1,4-diphenyl derivatives are distorted tetrahedral as is demonstrated by X-ray crystallography of [Ni(L(5)(*))(2)] (5) and [Ni(L(6)(*))(2)] (6). Both series of mononuclear complexes possess a diamagnetic ground state. The electronic structures of both series have been elucidated experimentally (electronic spectra magnetization data). The square planar complexes 1-3 consist of a diamagnetic central Ni(II) ion and two strongly antiferromagnetically coupled ligand pi-radicals as has been deduced from correlated ab initio calculations; they are singlet diradicals. The tetrahedral complexes 4-6 consist of a paramagnetic high-spin Ni(II) ion (S(Ni) = 1), which is strongly antiferromagnetically coupled to two ligand pi-radicals. This is clearly revealed by DFT and correlated ab initio calculations. Electrochemically, complexes 1-6 can be reduced to form stable, paramagnetic monoanions [1-6](-) (S = (1)/(2)). The anions [1-3](-) are square planar Ni(II) (d,(8) S(Ni) = 0) species where the excess electron is delocalized over both ligands (class III, ligand mixed valency). In contrast, one-electron reduction of 4, 5, and 6 yields paramagnetic tetrahedral monoanions (S = (1)/(2)). X-band EPR spectroscopy shows that there are two different isomers A and B of each monoanion present in solution. In these anions, the excess electron is localized on one ligand [Ni(II)(L(4-6)(*))(L(4-6))](-) where (L(4-6))(2-) is the closed shell dianion of the ligands H(2)[L(4-6)] as was deduced from their electronic spectra and broken symmetry DFT calculations. Oxidation of 1 and 5 with excess iodine yields octahedral complexes [Ni(II)(L(1,ox))(2)I(2)] (7), [Ni(II)(L(1,ox))(3)](I(3))(2) (8), and trans-[Ni(II)(L(5,ox))(2)(I(3))(2)] (9), which have been characterized by X-ray crystallography; (L(1-)(6,ox)) represent the neutral, two-electron oxidized forms of the corresponding dianions (L(1-6))(2-). The room-temperature structures of complexes 1, 5, and 7 have been described previously in refs 1-5.  相似文献   

6.
A series of fluorous derivatives of group 10 complexes MCl(2)(dppe) and [M(dppe)(2)](BF(4))(2) (M = Ni, Pd or Pt; dppe = 1,2-bis(diphenylphosphino)ethane) and cis-PtCl(2)(PPh(3))(2) was synthesized. The influence of para-(1H,1H,2H,2H-perfluoroalkyl)dimethylsilyl-functionalization of the phosphine phenyl groups of these complexes, as studied by NMR spectroscopy, cyclovoltammetry (CV), XPS analyses, as well as DFT calculations, points to a weak steric and no significant inductive electronic effect. The steric effect is most pronounced for M = Ni and leads in the case of NiCl(2)(1c) (3c) and [Ni(1c)(2)](BF(4))(2) (7c) (1c = [CH(2)P[C(6)H(4)(SiMe(2)CH(2)CH(2)C(6)F(13))-4](2)](2)) to a tetrahedral distortion from the expected square planar geometry. The solubility behavior of NiCl(2)[CH(2)P[C(6)H(4)(SiMe(3-b)(CH(2)CH(2)C(x)F(2x+1)b)-4](2)](2) (3: b = 1-3; x = 6, 8) in THF, toluene, and c-C(6)F(11)CF(3) was found to follow the same trends as those observed for the free fluorous ligands 1. A similar correlation between the partition coefficient (P) of complexes 3 and free 1 was observed in fluorous biphasic solvent systems, with a maximum value obtained for 3f (b = 3, x = 6, P = 23 in favor of the fluorous phase).  相似文献   

7.
In a novel template synthesis of carbodiphosphoranes (CDPs), the phosphine functionalized CDP ligand C(dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) is formed in the coordination sphere of group 10 metals from CS(2) and 4 equivalents of dppm. The products are the PCP pincer complexes [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt) and 2 equivalents of dppmS. The compound C(dppm)(2), which is composed of a divalent carbon atom and two dppm subunits, represents a new PCP-type pincer ligand with the formally neutral carbon Lewis base of the CDP functionality as the central carbon. Treatment of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Pd, Pt) with hydrochloric acid results in protonation at the CDP carbon atom and the formation of the PCP pincer complexes [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt). The PCP pincer ligand [CH(dppm)(2)](+) involves a formally cationic central carbon donor. The reaction of [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl with HCl leads to the extrusion of NiCl(2) and formation of the diprotonated CDP compound [CH(2)(dppm)(2)]Cl(2), from which the monoprotonated conjugate base [CH(dppm)(2)]Cl is obtained upon addition of bases, such as NH(3). The crystal structures of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt), [Ni(Cl)(C(dppm)(2)-κ3P,C,P)](2)[NiCl(4)], [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt) as well as [CH(2)(dppm)(2)]Cl(2) and [CH(dppm)(2)]Cl are presented. A comparison of the solid state structures reveals interesting features, e.g. infinite supramolecular networks mediated by C-H···Cl hydrogen bond interactions and an unexpected loss of molecular symmetry upon protonation in the complexes [M(CH(dppm)(2)-κ3P,C,P)(Cl)]Cl(2) (M = Pd, Pt) as a result of the flexible ligand backbone. Additionally the new compounds were characterized comprehensively in solution by multinuclear (31)P, (13)C and (1)H NMR spectroscopy: Several spectroscopic parameters show a striking variability in particular regarding the carbodiphosphorane functionality. Furthermore the compound [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl was examined by cyclic voltammetry (CV) and could be shown to display quasi-reversible oxidative as well as reductive behaviour.  相似文献   

8.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   

9.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

10.
Structures of protonated alane-Lewis base donor-acceptor complexes H2X2AlNHn(CH3)(3-n)+ (X = F, Cl, and Br; n = 0-3) as well as their neutral parents were investigated. All the monocations H2X2AlNHn(CH3)(3-n)+ are Al-H protonated involving hypercoordinated alane with a three-center two-electron bond and adopt the C(s) symmetry arrangement. The energetic results show that the protonated alane-Lewis complexes are more stable than the neutral ones. They also show that this stability decreases on descending in the corresponding periodic table column from fluorine to bromine atoms. The calculated protonation energies of HX2AlNHn(CH3)(3-n) to form H2X2AlNHn(CH3)(3-n)+ were found to be highly exothermic. The possible dissociation of the cations H2X2AlNHn(CH3)(3-n)+ into X2AlNHn(CH3)(3-n)+ and molecular H2 is calculated to be endothermic.  相似文献   

11.
Chen CH  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(5):2307-2316
The shift of the IR nu(S)(-)(H) frequency to lower wavenumbers for the series of complexes [Ni(II)(L)(P-(o-C6H4S)2(o-C6H4SH))]0/1- (L = PPh3 (1), Cl (6), Se-p-C6H4-Cl (5), S-C4H3S (7), SePh (4)) indicates that a trend of increasing electronic donation of the L ligands coordinated to the Ni(II) center promotes intramolecular [Ni-S...H-S] interactions. Compared to the Ni...S(H) distance, in the range of 3.609-3.802 A in complexes 1 and 4-7, the Ni...S(CH3) distances of 2.540 and 2.914 A observed in the [Ni(II)(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] complexes (8a and 8b, two conformational isomers with the chemical shift of the thioether methyl group at delta 1.820 (-60 degrees C) and 2.109 ppm (60 degrees C) (C4D8O)) and the Ni...S(CH3) distances of 3.258 and 3.229 A found in the [Ni(II)(L)(P(o-C6H4S)2(o-C6H4-SCH3))]1- complexes (L = SPh (9), SePh (10)) also support the idea that the pendant thiol protons of the Ni(II)-thiol complexes 1/4-7 were attracted by both the sulfur of thiolate and the nickel. The increased basicity (electronic density) of the nickel center regulated by the monodentate ligand attracted the proton of the pendant thiol effectively and caused the weaker S...H bond. In addition, the pendant thiol interaction modes in the solid state (complexes 1a and 1b, Scheme 1) may be controlled by the solvent of crystallization. Compared to complex 1a, the stronger intramolecular [Ni-S...H-S] interaction (or a combination of [Ni-S...H-S]/[Ni...H-S] interactions) found in complexes 4-7 led to the weaker S-H bond strength and accelerated the oxidation (by O2) of complexes 4-7 to produce the [Ni(Y)(L)(P(o-C6H4S)3)]1- (L = Se-p-C6H4-Cl (11), SePh (12), S-C4H3S (13)) complexes.  相似文献   

12.
A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.  相似文献   

13.
2,4-Diaryl- and 2,4-diferrocenyl-1,3-dithiadiphosphetane disulfide dimers (RP(S)S)(2) (R = Ph (1a), 4-C(6)H(4)OMe (1b), FeC(10)H(9) (Fc) (1c)) react with a variety of alcohols, silanols, and trialkylsilyl alcohols to form new dithiophosphonic acids in a facile manner. Their corresponding salts react with chlorogold(I) complexes in THF to produce dinuclear gold(I) dithiophosphonate complexes of the type [AuS(2)PR(OR')](2) in satisfactory yield. The asymmetrical nature of the ligands allows for the gold complexes to form two isomers (cis and trans) as verified by solution (1)H and (31)P[(1)H] NMR studies. The X-ray crystal structures of [AuS(2)PR(OR')](2) (R = Ph, R' = C(5)H(9) (2); R = 4-C(6)H(4)OMe, R' = (1S,5R,2S)-(-)-menthyl (3); R = Fc, R' = (CH(2))(2)O(CH(2))(2)OMe (4)) have been determined. In all cases only the trans isomer is obtained, consistent with solid state (31)P NMR data obtained for the bulk powder of 3. Crystallographic data for 2 (213 K): orthorhombic, Ibam, a = 12.434(5) A, b = 19.029(9) A, c = 11.760(4) A, V = 2782(2) A(3), Z = 4. Data for 3 (293 K): monoclinic, P2(1), a = 7.288(2) A, b = 12.676(3) A, c = 21.826(4) A, beta = 92.04(3) degrees, V = 2015.0(7) A(3), Z = 2. Data for 4 (213 K): monoclinic, P2(1)/n, a = 11.8564(7) A, b = 22.483(1) A, c = 27.840(2) A, beta = 91.121(1) degrees, V = 7419.8(8) A(3), Z = 8. Moreover, 1a-c react with [Au(2)(dppm)Cl(2)] to form new heterobridged trithiophosphonate complexes of the type [Au(2)(dppm)(S(2)P(S)R)] (R = Fc (12)). The luminescence properties of several structurally characterized complexes have been investigated. Each of the title compounds luminesces at 77 K. The results indicate that the nature of Au...Au interactions in the solid state has a profound influence on the optical properties of these complexes.  相似文献   

14.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

15.
Four rhodium dimers have been synthesized with a bridging diisocyanide ligand, dmb (2,2-dimethyl-1,3-diisocyanopropane): [Rh2(dmb)4](BPh4)2, [Rh2(dmb)4Cl2]Cl2, [Rh2(dmb)4I2](PF6)2, and [Rh2(dmb)2(dppm)2](BPh4)2 (dppm = bis(diphenylphosphino)methane). The complexes have been characterized by elemental analysis and mass spectrometry, as well as UV-visible, IR, and 1H NMR spectroscopies. X-ray crystal structures of the rhodium(I) complexes, [Rh2(dmb)4](BPh4)2 . 1.5CH3CN (3.2330(4), 3.2265(4) A) and [Rh2(dmb)2(dppm)2](BPh4)2.0.5CH3OH . 0.2H2O (3.0371(5) A), confirm the existence of short Rh...Rh interactions. The metal-metal separation for the rhodium(II) adduct, [Rh(2)(dmb)4Cl2]Cl2.6CHCl3 (2.8465(6) A), is consistent with a formal Rh-Rh bond. For the two luminescent rhodium(I) dimers and six previously investigated diisocyano-bridged dimers with and without dppm ligands, the intense spin-allowed dsigma-->psigma absorption band maximum shifts to longer wavelengths with decreasing Rh...Rh separation, and there is an approximate correlation between band energy and the inverse of the metal-metal separation cubed. Both [Rh2(dmb)4]2+ and [Rh2(dmb)4(dppm)2]2+ undergo oxidative addition in the presence of iodine. In the conversion of [Rh2(dmb)4]2+ to [Rh2(dmb)4I2]2+, the observed intermediate is tentatively assigned to a tetramer composed of two rhodium dimers. In the case of [Rh2(dmb)2(dppm)2]2+, no intermediate was detected.  相似文献   

16.
The reaction of 2 equiv of the bulky ligand N,N'-bis(3,5-di-tert-butylphenyl)-1,2-phenylenediamine, H2[3L(PDI)], excess triethylamine, and 1 equiv of M(CH3CO2)2.4H2O (M = Ni, Co) in the presence of air in CH3CN/CH2Cl2 solution yields violet-black crystals of [Ni(II)(3L(ISQ))2] CH3CN (1) or violet crystals of [Co(3L)2] (3). By using Pd(CH3CO2)2 as starting material, green-blue crystals of [Pd(II)(3L(ISQ))2].CH3CN (2) were obtained. Single-crystal X-ray crystallography revealed that 1 and 3 contain (pseudo)tetrahedral neutral molecules [M(3L)2] (M = Ni, Co) whereas in 2 nearly square planar, neutral molecules [Pd(II)(3L(ISQ))2] are present. Temperature-dependent susceptibility measurements established that 1 and 2 are diamagnetic (S = 0) whereas 3 is paramagnetic with an S = 3/2 ground state. It is shown that 1 contains two pi radical benzosemiquinonate(1-)-type monoanions, ((3L(ISQ))(1-*), S(rad) = 1/2), and a central Ni(II) ion (d8; S = 1) which are antiferromagnetically coupled yielding the observed S(t) = 0 ground state. This result has been confirmed by broken symmetry DFT calculations of 1. In contrast, the S(t) = 3/2 ground state of 3 is more difficult to understand: the two resonance structures [Co(III)(3L(ISQ))(3L(PDI))] <--> [Co(II)(3L(PDI))(3L(IBQ))] might be invoked (for tetrahedral [Co(II)(3L(ISQ))2] containing an S(Co) = 3/2 with two antiferromagnetically coupled pi-radical ligands an S(t) = 1/2 is anticipated). Complex 2 is diamagnetic (S = 0) containing a Pd(II) ion (d8, S(Pd) = 0 in an almost square planar ligand field) and two antiferromagnetically coupled ligand radicals (S(rad) = 1/2). The electrochemistry and spectroelectrochemistry of 1, 2, and 3 have been studied, and electron-transfer series comprising the species [M(L)2]z (z = 2+, 1+, 0, 1-, 2-) have been established. All oxidations and reductions are ligand centered.  相似文献   

17.
Reaction of CS(2) with [(dtbpe)Ni](2)(η(2),μ-C(6)H(6)) (1; dtbpe =1,2-bis(di-tert-butylphosphino)ethane) in toluene gives the carbon disulfide complex (dtbpe)Ni(η(2)-CS(2)) (2), characterized by standard spectroscopic methods and X-ray crystallography. Reaction of CS(2) with the Ni(I) complex (dtbpe)Ni(OSO(2)CF(3)) gives the diamagnetic, trimetallic cluster [{(dtbpe)Ni(κ(1),η(2)-CS(2))}(2)(dtbpe)Ni][SO(3)CF(3)](2) (3-OTf). The solid-state structure of 3-OTf reveals that the two CS(2) ligands bind η(2) to two (dtbpe)Ni centers and κ(1) to the third, unique (dtbpe)Ni in the complex dication, and NMR spectroscopic data indicate that this structure is maintained in solution. Oxidation of 2 by ferrocenium hexafluorophosphate affords the identical trimetallic complex dication as the PF(6)(-) salt, [{(dtbpe)Ni(κ(1),η(2)-CS(2))}(2)(dtbpe)Ni][PF(6)](2) (3-PF(6)). These results are consistent with the intermediacy of a Ni(I)-CS(2) complex, [(dtbpe)Ni(CS(2))(+)], that is unstable with respect to disproportionation. Reaction of 1 with one equivalent of CO(2) provides the carbon dioxide adduct (dtbpe)Ni(η(2)-CO(2)) (4), that was also crystallographically characterized. Thermolysis of 4 in benzene solution at 80 °C results in reduction of the CO(2) ligand to CO, trapped as (dtbpe)Ni(CO)(2), and partial oxidation of a dtbpe ligand to give O═P(tert-Bu)(2)CH(2)CH(2)P(tert-Bu)(2).  相似文献   

18.
The novel pyridine-containing 14-membered macrocycle 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L), which contains an N2S2 donor set, was synthesized, and its protonation behavior was studied by absorption titration with CH3SO3H. The reaction of L with Pd(II) was studied spectroscopically, and the square-planar complex [Pd(L)](BF4) was isolated and characterized. The reactions between L and NiX2 x 6 H2O (X = BF4, ClO4) in ethanol or acetonitrile afforded the octahedral complexes [Ni(CH3CN)(H2O)(L)](X)2 and [Ni(H2O)2(L)](X)2, respectively. The square-planar complexes [Ni(L)](X)2 were obtained by heating these octahedral complexes. Spectrophotometric titrations of [Ni(L)](BF4)2 were performed with neutral and negatively charged ligands. The color of nitromethane solutions of this square-planar complex turns from red to cyan, purple, blue, yellow-green, and pink following addition of halides, acetonitrile, water, pyridine, and 2,2'-bipyridine, respectively. X-ray structural analyses were carried out on the {[Ni(ClO4)(H2O)(L)][Ni(H2O)2(L)]}(ClO4)3, [Ni(CH3CN)(H2O)(L)](ClO4)2, [{Ni(L)}2(mu-Cl)2](ClO4)2, and [{Ni(L)}2(mu-Br)2]Br2 x 2 CH3NO2 complexes.  相似文献   

19.
Nickel(II) complexes of the general composition Ni(L)X(2) (where X=SCN, NO(3) and 1/2SO(4) and ligands=L(1) L(2) and L(3)) have been synthesized and characterized by elemental analyses, magnetic moments, IR, (1)H NMR, (13)C NMR and electronic spectral studies. Nickel(II) ions, such as nitrates, thiocyantes and sulphates were found to act as templates for the cyclic condensations [1+1] and [2+2] of NH(2--)C(6)H(4)--O--CH(2)--CH(2)--O--C(6)H(4)--NH(2), NH(2)--(CH(2))(2)--NH(2) and NH(2)--CH(CH(3))--CH(2)--NH(2) with C(6)H(5)--CO--CO--C(6)H(5), C(6)H(5)--CO--CH(2)--CO--C(6)H(5) and (COOH--CH(2)--CH(2))(2)S. All the complexes show magnetic moments corresponding to two unpaired electrons except [Ni(L(1))](NO(3))(2) and [Ni(L(2))](NO(3))(2) complexes which are diamagnetic. Electronic spectroscopy was used to analyse the differences between the paramagnetic and diamagnetic forms. Electrochemical properties have been studied extensively for Ni(III/II) and Ni(II/I) couples. The equilibrium between the paramagnetic and diamagnetic forms and the nickel(III/II) couple are strongly dependent on the electrolyte. It has been observed that the sulphate group coordinated selectively on the apical position of the nickel(II) centers of the compounds. The structural and electrochemical studies suggest that cooperative effects, involving coordination of sulphate to one nickel center, is responsible for the recognition of this anion. Various ligand field parameters have been calculated and discussed.  相似文献   

20.
The influence of substituents at the C(2) carbon of N(1)-substituted thiosemicarbazones, {C(4)H(3)X-C(2)(CH(3))=N(3)-N(2)H-C(1)(=S)N(1)HR(2)} (X = O, S) on the geometry of nickel(ii) complexes has been investigated. The presence of a methyl group at the C(2) position of 2-acetylfuran-N(1)-substituted thiosemicarbazones {(C(4)H(3)O)-C(2)(CH(3))=N(3)-N(2)H-C(1)(=S)N(1)HR(2), R(2) = CH(3), HaftscN-Me; C(2)H(5), HaftscN-Et; C(6)H(5), HaftscN-Ph} induces unusual coordination by the furan ring and yielded high spin octahedral nickel(II) complexes, [Ni(κ(3)-O, N(3), S-aftscN-R(2))(2)], CH(3)1, C(2)H(5)2, and 2[Ni((κ(3)-O, N(3), S-aftscN-Ph)(2)] 3 (μ(eff) = 2.98, 1; 2.96, 2; 2.92, 3). With 2-acetylthiophene-N(1)-substituted thiosemicarbazones, {(C(4)H(3)S)-C(2)(CH(3))=N(3)-N(2)H-C(1)(=S)N(1)HR(2), R(2) = CH(3), HattscN-Me; C(2)H(5), HattscN-Et; C(6)H(5), HattscN-Ph}, N(3), S chelated low spin trans square planar complexes, {[Ni(κ(3)-O, N(3), S-attscN-R(2))(2)], R(2) = CH(3), 4; C(2)H(5), 5; C(6)H(5), 6} with pendant thiophene rings have been obtained. The bigger sized sulfur atoms of the thiophene rings form short intramolecular contacts with the deprotonated hydrazinic nitrogen atoms (SN(2)) inhibiting its lability for possible coordination to nickel(II). Complexes have one independent molecule (1) or two independent molecules (2, 3) in their respective crystal lattices. The simultaneous presence of methyl groups at the C(2) and N(1) atoms of 2-acetylthiophene-N(1)-methylthiosemicarbazone (HattscN-Me) have facilitated the binding of triphenylphosphine in three-coordinate copper(i) halide complexes, [CuX(η(1)-S-HattscN-Me)(Ph(3)P)] (X, Br, 7; Cl, 8), which represent an unusual donor set of ligands, namely, triphenylphosphine, sulfur of a thio-ligand and a halide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号