首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report new method for selectively removing the metallic CNTs from semiconducting CNTs in a powder using high-power microwave radiation in the infrared and radio frequency range of the electromagnetic spectrum. SWNTs in a powder film were heated in a 2.5 GHz microwave oven for a few minutes, and the metallic nanotubes burned more rapidly than the semiconducting nanotubes. Raman data showed that the ratio of metallic to semiconducting nanotubes decreased dramatically after exposure to microwave radiation. Using their more rapid absorption of the radiation energy of the microwaves, we achieved the selective removal of metallic SWNTs from semiconducting SWNTs. This method results in the high-purity of semiconducting SWNTs necessary for sensor and electronic applications.  相似文献   

2.
In spite of the outstanding properties of single-walled carbon nanotubes (SWNTs), the coexistence of metallic and semiconducting SWNTs as a result of synthesis has hindered their electronic and photonic applications. We demonstrate a pump-probe microscopy method for fast, contact-free mapping of metallicity in individual SWNTs. We employ the phase of transient absorption as a contrast to discriminate metallic and semiconducting SWNTs. Furthermore, we have clarified the phase dependence on the pump or probe wavelengths and the energy structure of SWNTs. Our imaging method holds the potential of serving as a high-speed metallicity-mapping tool to assist the development of SWNT-based nanoelectronics.  相似文献   

3.
We have studied the electronic structure and charge-carrier dynamics of individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using optical and electron–spectroscopic techniques. The electronic structure of semiconducting SWNTs in the band-gap region is analyzed using near-infrared absorption spectroscopy. A semi-empirical expression for E11S transition energies, based on tight-binding calculations is found to give striking agreement with experimental data. Time-resolved PL from dispersed SWNT-micelles shows a decay with a time constant of about 15 ps. Using time-resolved photoemission we also find that the electron–phonon (e–ph) coupling in metallic tubes is characterized by a very small e–ph mass-enhancement of 0.0004. Ultrafast electron–electron scattering of photo-excited carriers in nanotube ropes is finally found to lead to internal thermalization of the electronic system within about 200 fs. PACS 78.47.+p; 81.07.De; 78.67.Ch; 87.64.Ni  相似文献   

4.
We study exciton (EX) dynamics in single-walled carbon nanotubes (SWNTs) included in polymethylmethacrylate by two-color pump-probe experiments with unprecedented temporal resolution. In the semiconducting SWNTs, we resolve the intersubband energy relaxation from the EX2 to the EX1 transition and find time constants of about 40 fs. The observation of a photoinduced absorption band strictly correlated to the photobleaching of the EX1 transition supports the excitonic model for primary excitations in SWNTs. We also detect in the time domain coherent oscillations due to the radial breathing modes at approximately 250 cm(-1).  相似文献   

5.
We report optical properties of the smallest single-walled carbon nanotubes (SWNTs) with a diameter of only 3 A. These ultrasmall SWNTs are fabricated in the elliptical nanochannels of an AlPO-11 (AEL) single crystal. Polarized and resonant Raman scattering unambiguously revealed that these 0.3 nm SWNTs are of (2,2) armchair symmetry. Interestingly, the (2,2) armchair tube has two metastable ground states corresponding to two slightly different lattice constants in the axial direction: one state is metallic and the other is semiconducting.  相似文献   

6.
在考虑曲率效应的情况下,在螺旋坐标系下解析地推导了非手性的碳纳米管(SWNTs)(包括扶手椅型和锯齿型)的能量色散关系,并分析了曲率效应对超小扶手椅型SWNTs的能带、能隙和导电能力及其对超小锯齿型SWNTs(包括扶手椅型和锯齿型)的能隙的影响.  相似文献   

7.
Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at Elaser = 1.17 eV suggest that a charge‐transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We report the direct experimental observation of the semiconductor-metal transition in single-wall carbon nanotubes (SWNTs) induced by compression with the tip of an atomic force microscope. This transition is probed via electric force microscopy by monitoring SWNT charge storage. Experimental data show that such charge storage is different for metallic and semiconducting SWNTs, with the latter presenting a strong dependence on the tip-SWNT force during injection. Ab initio calculations corroborate experimental observations and their interpretation.  相似文献   

9.
赵华波  王亮  张朝晖 《物理学报》2011,60(8):87302-087302
利用物理蒸发技术,在半导体性的碳纳米管上沉积钯金属,利用导电原子力显微镜检测钯吸附对碳纳米管电输运的影响.结果表明:沉积的钯在碳纳米管上形成纳米颗粒,随着钯颗粒密度的增加,半导体性碳纳米管逐渐向金属性转变.利用第一性原理计算了吸附有钯原子的半导体性单壁碳纳米管的能带结构.研究发现,钯的覆盖率越高,其禁带宽度越窄,直至为零,定性说明了实验结果的合理性. 关键词: 单壁碳纳米管 钯纳米颗粒 导电原子力显微镜 第一性原理计算  相似文献   

10.
We investigate the interaction of single-walled carbon nanotubes (SWCNTs) and methane molecule from the first principles. Adsorption energies are calculated, and methane affinities for the typical semiconducting and metallic nanotubes are compared. We also discuss role of the structural defects and nanotube curvature on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the metallic CNTs in comparison with the semiconducting CNTs. The obtained results for the zig zag nanotubes with various diameters reveal that the adsorption energy is higher for nanotubes with larger diameters. For defected tubes the adsorption energies are calculated for various configurations such as methane molecule approaching to the defect sites pentagon, hexagon, and heptagon in the tube surface. The results show that the introduce defects have an important contribution to the adsorption mechanism of the methane on SWNTs.  相似文献   

11.
The adsorption of glucose molecule on single-walled carbon nanotubes (SWCNTs) is investigated by density functional theory calculations. Adsorption energies and equilibrium distances are evaluated, and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared. We also investigated the role of the structural defects on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the larger diameters semiconducting CNTs, while the story is paradoxical for the metallic CNTs. The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles. Finally, the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon, hexagon, and heptagon sites in the tube surface. We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs. The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption. Consequently, one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

12.
The adsorption of glucose molecule on single-walled carbon nanotubes(SWCNTs)is investigated by density functional theory calculations.Adsorption energies and equilibrium distances are evaluated,and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared.We also investigated the role of the structural defects on the adsorption capability of the SWCNTs.We could observe larger adsorption energies for the larger diameters semiconducting CNTs,while the story is paradoxical for the metallic CNTs.The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles.Finally,the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon,hexagon,and heptagon sites in the tube surface.We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs.The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption.Consequently,one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

13.
The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1–1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.  相似文献   

14.
We report measurements of the full intrinsic optical anisotropy of isolated single-wall carbon nanotubes (SWNTs). By combining absorption spectroscopy with transmission ellipsometry and polarization-dependent resonant Raman scattering, we obtain the real and imaginary parts of the SWNT permittivity from aligned semiconducting SWNTs dispersed in stretched polymer films. Our results are in agreement with theoretical predictions, highlighting the limited polarizability of excitons in a quasi-1D system.  相似文献   

15.
Charge transport in semiconducting single-walled nanotubes (SWNTs) with Schottky-barrier contacts has been studied at high bias. We observe nearly symmetric ambipolar transport with electron and hole currents significantly exceeding 25 microA, the reported current limit in metallic SWNTs due to optical phonon emission. Four simple models for the field-dependent velocity (ballistic, current saturation, velocity saturation, and constant mobility) are studied in the unipolar regime; the high-bias behavior is best explained by a velocity-saturation model with a saturation velocity of 2 x 10(7) cm/s.  相似文献   

16.
We measured third-order nonlinear susceptibility (chi(3)) spectra in semiconducting single-walled carbon nanotubes (SWNTs) by the Z-scan method. |Imchi(3)| is remarkably enhanced under resonant excitation to the lowest interband transition, reaching 4.2 x 10(-6) esu and 1.5 x 10(-7) esu in SWNTs grown by the laser ablation and HiPco methods, respectively. A comparison of the transient absorption changes evaluated by degenerate and nondegenerate pump-probe measurements suggests that the resonant enhancement of |Imchi(3)| is dominated by a coherent process rather than by saturation of absorption.  相似文献   

17.
High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 14 July 1999  相似文献   

18.
Single-walled carbon nanotubes (SWNTs) have many interesting properties; they may be metallic or semiconducting depending on their diameter and helicity of the graphene sheet. Hydrostatic or quasi-hydrostatic high pressures can probe many electronic features. Resistance-temperature measurements in SWNTs from normal condition and under 0.4 GPa of quasi-hydrostatic pressures reveal a semiconducting-like behavior. From 0.5 to about 2.0 GPa, the resistance changes to a Kondo-like feature due to magnetic impurities used to catalyse the nanotube formation. Above 2.0 GPa, they become metallic and at about 2.4 GPa, the resistance decreases dramatically around 3 K suggesting a superconducting transition.  相似文献   

19.
We have studied 1D exciton relaxation dynamics in semiconducting single-walled carbon nanotubes (SWNTs) by femtosecond pump–probe experiments. The time evolution of change in transmittance ΔT/T induced by photo-excitation varies depending on the tube diameter. The decay time decreases with a decrease in the tube diameter. Pressure measurements have been conducted to explore the relaxation mechanism. The deformation potential estimated from the pressure dependence of photoluminescence spectra increases with decreasing tube diameter. This means that the exciton–phonon interaction becomes stronger in the smaller diameter tubes. The diameter dependences of decay time and deformation potential suggest that the exciton–phonon interaction plays an important role in exciton nonradiative relaxation process in semiconducting SWNTs.  相似文献   

20.
We show that single-walled carbon nanotube (SWNT) bundles emit visible fluorescence in the presence of noble metal nanoparticles and nanorods in the solid state. Conductivity measurements with metallic nanotubes, isolated from pristine SWNTs, show that they become semiconducting in the presence of the metal nanoparticles. Nanoparticle binding increases the defects in the nanotube structures which is evident in the Raman spectra. The metal-semiconductor transition removes the nonradiative decay channels of the excited states enabling visible fluorescence. Nanotube structures are imaged using this emission with resolution below the classical limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号