共查询到20条相似文献,搜索用时 15 毫秒
1.
Michael I. Bruce Ernst Horn Janis G. Matisons Michael R. Snow 《Journal of organometallic chemistry》1985,286(2):271-287
The reactions of Os3(μ-H)2(CO)10 with a series of Group IB metal acetylide-tertiary phosphine complexes are described. Whereas the compounds M(C2C6F5)(PPh3) (M = Cu, Ag, Au) afforded the complexes MOs3(μ-CHCHC6F5)(CO)10(PPh3) cleanly and in high yield, complex mixtures of products were obtained from reactions of the analogous phenylacetylides. The complexes MOs3(μ-CHCHPh)(CO)10(PPh3), MOs3(μ-CHCHPh)(CO)9(PPh3)2 and MOs3(μ-H)(CO)10(PPh3) (of known structure), and MOs3(μ-CHCHPh)(CO)9(PPh3)2 and HMOs3(CHCPh)(CO)8 (of unknown structure) were characterised; Au(C2Ph)(PMe3) afforded similar derivatives. The reactions proceed by oxidative-addition and hydrogen migration steps; MP bond cleavage reactions also occur to a small extent. The molecular structures of AuOs3(μ-CHCHC6R5)(CO)10(PPh3) (R = F or H) were determined by X-ray analyses. For R = F, crystals are triclinic, space group P with a 9.081(2), b 13.291(2), c 17.419(2) Å, α 84.49(1), β 76.20(2), γ 75.81(2)° and Z = 2; 4622 observed data [I > 2.5σ(I)] were refined to R = 0.027, RW = 0.031. For R = H, crystals are triclinic, space group P, with a 9.403(4), b 13.448(3), c 13.774(4) Å, α 83.34(2), β 88.66(3), γ 70.21(3)°, and Z = 2; 4405 observed data [I > 2.5σ(I)] were refined to R = 0.030, RW = 0.033. The two molecules differ in the orientation of the Ph rings of the PPh3 groups, but are otherwise similar to Os3(μ-H)(μ-CHCHBut)(CO)10 with the μ-H ligand replaced by the isolobal μ-Au(PPh3) group. 相似文献
2.
3.
Muna R. A. Al-Mandhary Radchada Buntem Cheryl L. Doherty Andrew J. Edwards John F. Gallagher Jack Lewis Chi-Keung Li Paul R. Raithby M. Carmen Ramirez de Arellano Gregory P. Shields 《Journal of Cluster Science》2005,16(2):127-150
The clusters [H2Os4M(CO)12eta6-C6H6)] (M=Os, Ru) may be deprotonated to generate anions [Os4M(CO)12eta6-C6H6)]2- which react with [M′eta6-C6H5R) (MeCN)3]2+(M′=Os, Ru; R=H, Me) to give the bicapped tetrahedral clusters [Os4(CO)12MM′eta6-C6H5R)2]. Whereas [Os4(CO)12M2eta6-C6H6)2] (M=Os, Ru) have one Meta6-C6H6) unit in a site connected to three other metals, {3}, and one in a site connected to four other metals, {4}, [Os4(CO)12OsRueta6-C6H6)2] has the Rueta6-C6H6) unit in the {3} site irrespective of whether the Os or Ru anion is capped. Coupling of these anions with Au2dppm yields [Os4M(CO)12eta6-C6H6)(Au2dppm)] (M=Os, Ru), which have the arene ligand in the axial site of a trigonal bipyramid and the digold unit capping two faces. Reduction of [H2Os5(CO)15] with K/Ph2CO and coupling with [Rueta5-C5H5)(MeCN)3]2+yields the monoanion [Os5(CO)15Rueta5-C5H5)]? which reacts with [AuPPh3]+ generating [Os5(CO)15Rueta5-C5H5)(AuPPh3)] with the “Ru(C5H5)” unit in the terminal {3} site. 相似文献
4.
5.
6.
The influences of R, the alpha-diimine, and the transition metal M on the excited-state properties of the complexes [M(SnR3)2(CO)2(alpha-diimine)] (M = Ru, Os; R = Ph, Me) have been investigated. Various synthetic routes were used to prepare the complexes, which all possess an intense sigma-bond-to-ligand charge-transfer transition in the visible region between a sigma(Sn-M-Sn) and a pi*(alpha-diimine) orbital. The resonance Raman spectra show that many bonds are only weakly affected by this transition. The room-temperature time-resolved absorption spectra of [M(SnR3)2(CO)2(dmb)] (M = Ru, Os; R = Me, Ph; dmb = 4,4'-dimethyl-2,2'-bipyridine) show the absorptions of the radical anion of dmb, in line with the SBLCT character of the lowest excited state. The excited-state lifetimes at room temperature vary between 0.5 and 3.6 microseconds and are mainly determined by the photolability of the complexes. All complexes are photostable in a glass at 80 K, under which conditions they emit with very long lifetimes. The extremely long emission lifetimes (e.g., tau = 1.1 ms for [Ru(SnPh3)2(CO)2(dmb)]) are about a thousand times longer than those of the 3MLCT states of the [Ru(Cl)(Me)(CO)2(alpha-diimine)] complexes. This is due to the weak distortion of the former complexes in their 3SBLCT states as seen from the very small Stokes shifts. Remarkably, replacement of Ru by Os hardly influences the absorption and emission energies of these complexes; yet the emission lifetime is shortened because of an increase of spin-orbit coupling. The quantum yield of emission at 80 K is 1-5% for these complexes, which is lower than might be expected on the basis of their slow nonradiative decay. 相似文献
7.
8.
M. A. Chistyakov E. P. Simonenko V. G. Sevast’yanov N. T. Kuznetsov 《Russian Journal of Coordination Chemistry》2006,32(10):693-700
The molecular geometries of the complexes trans-[M(18-crown-6)(C5HO2F6)2] (where M = Ca, Sr, Ba (I), Zn, Cd, Sn, Pb (II), Fe, Co, Eu, and Yb) were modeled by the molecular mechanics method with fixed R(M-O) distances. The shielding degrees of the central metal atom in these complexes were calculated and the number and types of possible intermolecular contacts between their molecules in the structure were determined. The intermolecular interactions involve identical fragments (atoms) of the ligands: the CF3 groups of the hexafluoroacetylacetonate ligands and the methylene fragments of the crown ether. Previously unknown complex II and complex I were synthesized according to an original procedure. The structure and thermochemical properties (including sublimation by the Knudsen method) of complex II were studied. As in complex I, the metal cation in complex II is in the cavity of the macrocycle of the crown ether; the hexafluoroacetylacetonate ligands are trans relative to that cation. The presumed similarity of complexes I and II in thermochemical characteristics was confirmed experimentally. Both the complexes melt in close temperature intervals and sublime at the same temperature (~10?2 mm Hg) without decomposition. The enthalpies of sublimation of complexes I and II, as well as the entropy contributions to their volatilities, are equal to within the experimental error. 相似文献
9.
Iron(II) Phosphane Complexes. Synthesis and Crystal Structures of [Fe2I4(dppe)2], [Fe2(SR)4(dppe)2], [Fe(SR′)2(dppp)] and [Fe(SR)2(PMePh2)2] (dppe = Ph2P(CH2)2PPh2; dppp = Ph2P(CH2)3PPh2; R = 2,4,6-Me3C6H2; R′ = 2,4-tBuC6H3) The title compounds were isolated and their structures determined by crystallographic methods. [Fe2I4(dppe)2] ( 1 ) and [Fe2(SR)4(dppe)2] ( 2 ) form dimeric complexes with the bidentate phosphane binding to different iron atoms. The resulting ten-membered rings of both compounds exhibit a nearly identical conformation. The central FeS2P2 units of the mononuclear complexes [Fe(SR′)2(dppp)] ( 3 ) and [Fe(SR)2(PMePh2)2] ( 4 ) show like 2 large deviations from ideal C2v symmetry with bonding angles around the central iron atom ranging from 97.2, 92.5, and 96.5° (angle P? Fe? P in 2, 3 , and 4 , respectively) to 129.0, 129.9, and 133.6° (angle S? Fe? S in 2, 3 , and 4 , respectively). 相似文献
10.
《Journal of organometallic chemistry》1987,328(3):C37-C39
The complex [Ru(SC6F5)2(PPh3)2] has been prepared from [RuCl2(PPh3)3] and [Pb(SC6F5)2] and shown by X-rays to have a pseudo-octahedral structure apparently with two RuHC interactions. It reacts with CO to give [Ru(SC6F5)2-(CO)2(PPh3)2]. 相似文献
11.
Phosphanediyl Transfer from Inversely Polarized Phosphaalkenes R1P=C(NMe2)2 (R1 = tBu, Cy, Ph, H) onto Phosphenium Complexes [(η5‐C5H5)(CO)2M=P(R2)R3] (R2 = R3 = Ph; R2 = tBu, R3 = H; R2 = Ph, R3 = N(SiMe3)2) Reaction of the freshly prepared phosphenium tungsten complex [(η5‐C5H5)(CO)2W=PPh2] ( 3 ) with the inversely polarized phosphaalkenes RP=C(NMe2)2 ( 1 ) ( a : R = tBu; b : Cy; c : Ph) led to the η2‐diphosphanyl complexes ( 9a‐c ) which were isolated by column chromatography as yellow crystals in 24‐30 % yield. Similarly, phosphenium complexes [(η5‐C5H5)(CO)2M=P(H)tBu] (M = W ( 6 ); Mo ( 8 )) were converted into (M = W ( 11 ); Mo ( 12 )) by the formal abstraction of the phosphanediyl [PtBu] from 1a . Treatment of [(η5‐C5H5)(CO)2W=P(Ph)N(SiMe3)2] ( 4 ) with HP=C(NMe2)2 ( 1d ) gave rise to the formation of yellow crystalline ( 10 ). The products were characterized by elemental analyses and spectra (IR, 1H, 13C‐, 31P‐NMR, MS). The molecular structure of compound 10 was elucidated by an X‐ray diffraction analysis. 相似文献
12.
Belletti D Graiff C Massera C Minarelli A Predieri G Tiripicchio A Acquotti D 《Inorganic chemistry》2003,42(25):8509-8518
The reactions of [M3(CO)12] (M=Ru or Fe) with 1,2 bis[(diphenylphosphino)methyl]benzene diselenide (dpmbSe2) in hot toluene afford a variety of phosphine-substituted selenido carbonyl clusters. They belong to the following three families: (i) 50-electron clusters with a M3Se2 core (2, 3, 5-7), (ii) 48-electron clusters with a M3Se core (1, 8), (iii) 34-electron clusters with a M2Se2 core (4). All these species derive from the P=Se bond cleavage. Cluster 1, which contains a hydrido, a phosphido, and a carbene ligand, is produced by multiple fragmentation of the diphosphine. This fragmentation appears related to the presence of the selenido ligand on the cluster, as the reaction of [Ru3(CO)12] with dpmb (not selenized) produces only carbonyl substitution by the phosphine to give [Ru3(CO)10(mu-dpmb)] (9). All the clusters synthesized have been characterized by spectroscopic techniques, and in some cases fluxional behavior has been detected in solution by NMR analysis. The structures of 1, 2, and 7-9 have been determined by X-ray diffraction methods. 相似文献
13.
Alvarez MA García ME Martínez ME Ramos A Ruiz MA Sáez D Vaissermann J 《Inorganic chemistry》2006,45(17):6965-6978
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer. 相似文献
14.
Ernesto Carmona Jose M. Marin Manuel L. Poveda Robin D. Rogers Jerry L. Atwood 《Journal of organometallic chemistry》1982,238(4):C63-C66
The reduction of [WCl4(PMe3)3] with dispersed sodium, under dinitrogen, gives cis-[W(N2)2(PMe3)4], while under ethylene trans-[W(C2H4)2(PMe3)4] is obtained. The ethylene complex can also be prepared by displacement of the dinitrogen molecules in cis-[W(N2)2(PMe3)4] by ethylene at room temperature and pressure. Interaction of cis-[M(N2)2(PMe3)4] complexes (M = Mo, W), with PMe3, under helium or argon, yields [M(N2)(PMe3)5]. The molybdenum complex crystallizes in the orthorhombic space group Pnma, with a 22.063(6), b 12.106(4), c 9.745(4) Å. The Mo—P distance trans to the dinitrogen ligand (2.483(7) Å) is slightly longer than the average of the other four Mo—P bonds (2.460(5) Å). 相似文献
15.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands. 相似文献
16.
17.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials. 相似文献
18.
The thermally unstable compound [Hg[P(C(6)F(5))(2)](2)] was obtained from the reaction of mercury cyanide and bis(pentafluorophenyl)phosphane in DMF solution and characterized by multinuclear NMR spectroscopy. The thermally stable trinuclear compounds [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)] and [Hg[(mu-P(C(6)F(5))(2))W(CO)(5)](2)] are isolated and completely characterized. The higher order NMR spectra exhibiting multinuclear satellite systems have been sufficiently analyzed. [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)].2DMF crystallizes in the monoclinic space group C2/c with a = 2366.2(3) pm, b = 1046.9(1) pm, c = 104.0(1) pm, and beta = 104.01(1) degrees. Structural, NMR spectroscopic, and vibrational data prove a weak coordination of the two DMF molecules. Structural, vibrational, and NMR spectroscopic evidence is given for a successive weakening of the pi back-bonding effect of the W-P bond in the order [W(CO)(5)PH(R(f))(2)], [Hg[(mu-P(R(f))(2))W(CO)(5)](2)], and [W[P(R(f))(2)](CO)(5)](-) with R(f) = C(6)F(5) and CF(3). The pi back-bonding effect of the W-C bonds increases vice versa. 相似文献
19.
Synthesis and Structures of the Multinuclear Rhenium Nitrido Complexes [Re2N2Cl4(PMe2Ph)4(MeCN)] and [Re4N3Cl9(PMe2Ph)6] The binuclear rhenium complex [Re2N2Cl4(PMe2Ph)4(MeCN)] ( 1 ) is obtained as a byproduct of the synthesis of [(Me2PhP)3(MeCN)ClReNZrCl5] from [ReNCl2(PMe2Ph)3] and [ZrCl4(MeCN)2] in toluene. It crystallizes as 1 · 2 toluene in the monoclinic space group P21/n with a = 1517.0(3); b = 1847.7(2); c = 1952.4(6) pm; β = 106.44(1)° and Z = 4. The two Re atoms are connected by an asymmetric nitrido bridge Re≡N–Re with distances Re–N of 169.9(5) and 208.7(5) pm. In course of the reaction of [ReNCl2(PMe2Ph)3] with [ZrCl4(THF)2] in CH2Cl2 hydrochloric acid is formed by acting of the Lewis acid on the solvent. HCl protonates and eliminates phosphine ligands of the educt [ReNCl2(PMe2Ph)3] to form the phosphonium salt [PMe2PhH]2[ZrCl6] ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 1536.9(3); b = 1148.8(1); c = 1402.2(3) pm, β = 100.70(2)° and Z = 4. The remaining fragments of the rhenium complex combine to yield the tetranuclear mixed valent complex [Re4N3Cl9(PMe2Ph)6] ( 3 ), crystallizing as 3 · CH2Cl2 in the triclinic space group P 1 with a = 1312.9(19); b = 1661.4(2); 1897.1(2) pm; α = 78.62(1)°; β = 86.77(1)°; γ = 68.28(1)° and Z = 2. The four Re atoms occupy the corners of a tetrahedron. Its edges are formed by three nitrido and three chloro bridges. The asymmetric nitrido bridges Re≡N–Re are characterized by short distances in the range of 172(2) to 176(3) pm and long distances of 194(3) to 204(2) pm. The angles Re–N–Re are between 154(1) and 160(1)°. 相似文献
20.
Alexander Lorenz Dieter Fenske 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2001,113(23):4537-4541