首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of UCl4 with 25,27-dimethoxy-5,11,17,23-tetra-tert-butylcalix[4]arene (H2Me2calix) in THF or pyridine at 80 degrees C gave [UCl2(Me2calix)L2] [L = THF (1) or pyridine (2)]. Similar treatment of U(acac)(4) (acac = MeCOCHCOMe) with H2Me2calix in THF or pyridine afforded [U(acac)2(Me2calix)] (3). The bis-calixarene compound [U(Me2calix)(H2calix)] (4) was obtained by reaction of U(OTf)4 or U(OTf)3 with H2Me2calix in pyridine at 110 degrees C. Treatment of UCl4 with H2Me2calix in pyridine at 110 degrees C gave [Mepy][UCl2(Hcalix)(py)2] (5) resulting from demethylation and acid cleavage of the methoxy groups of the calixarene ligand of 2. Adventitious traces of air were responsible for the formation of [Hpy][Mepy]4[{UCl(calix)}3(mu3-O)][UCl6] (6) during the reaction of UCl4 and H2Me2calix, and of [{U(Me2calix)(mu3-O)LiCl(THF)}2] (7) during the reaction of 2 with tBuLi. The X-ray crystal structures of 1.2THF, 2.2py, 3.0.25L (L = THF and py), 4.2py, 5, 6.3py and 7.THF have been determined.  相似文献   

2.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

3.
The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.  相似文献   

4.
Neodymium tri-iodide reacts with Group 12 metal (M; M = Zn, Cd, Hg) iodides to form heterometallic compounds. These Lewis acidic M cleave Nd-I bonds to give either ionic ([(THF)(5)NdI(2)][MI(3)THF]; M = Zn, Cd) or charge-neutral [(THF)(5)NdI(micro(2)I)HgI(3)] compounds. Differences in structure are interpreted primarily in terms of M-L bond strengths, rather than Nd-L bond strengths. Experiments with Yb indicate that if there is any excess iodide present in these syntheses then the most readily isolated product is a triiodide salt, i.e., [(THF)(5)YbI(2)][I(3)]. In conventional solvents the presence of Lewis acid is not required for iodide displacement-from pyridine, "YbI(3)" crystallizes as [(py)(5)YbI(2)][I]. These compounds are potentially useful as heterometallic sources of lanthanide-doped iodide matrixes, they illustrate the ease with which iodides are displaced from lanthanide coordination spheres, and they underscore the complexity associated with using lanthanide iodides as Lewis acid catalysts.  相似文献   

5.
Reactions of Ln(OTf)3(Ln = Ce, Nd) or [U(OTf)3(dme)2](OTf = OSO2CF3, dme = dimethoxyethane) with 2 mol equivalents of 2,2':6',2"-terpyridine (terpy) in pyridine or acetonitrile led to the quantitative formation of the bis(terpy) complexes which crystallized as the discrete cation-anion pairs [M(OTf)2(terpy)2(py)][OTf] x 0.5py from pyridine or neutral derivatives [M(OTf)3(terpy)2] x nMeCN from acetonitrile (M = Ce, Nd, U). The crystal structures of these complexes show the differences in the M-O bond lengths to follow the variation of the ionic radii of the metals, while the U-N(terpy) and U-N(py) bonds are shorter than those expected from a purely ionic bonding model. The better affinity of terpy for U(III) over Ce(III) and Nd(III) was evidenced by the thermodynamic parameters (K, DeltaH, DeltaS) corresponding to the equilibrium between the bis- and tris(terpy) complexes in acetonitrile. Hydrolysis of the bis(terpy) compounds followed different courses; whereas the aquo compound [Ce(OTf)2(terpy)2(H2O)][OTf] crystallized readily from pyridine, the uranium complexes [UX2(terpy)2(py)]X (X = I, OTf) were oxidized into the tri- and tetranuclear mu-oxo U(IV) compounds [{UI(terpy)2(mu-O)}2{UI2(terpy)}]I4 x 2MeCN x H2O and [{U(OTf)(terpy)2(mu-O)(mu-OTf)U(terpy)}2(mu-OTf)2(mu-O)][OTf]4 x py x MeCN. The crystal structures of these first examples of uranium(IV) compounds with terpy ligands show the almost linear arrangement of the metal atoms.  相似文献   

6.
Reactions of Ln(BH4)3(THF)3 (Ln = Nd, Ce) and M2dddt (M = Na, K; dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) in THF or pyridine gave, after addition of 18c6 (18-crown-6), several crystalline compounds which all contain the tris(dithiolene) Ln(dddt)3 unit. Crystals of [Na(18c6)(py)2]2[Na(18c6)(py)][Nd(dddt)3(py)].3py (1.3py) are built up from discrete mononuclear cationic and anionic species whereas crystals of {[Na(18c6)(py)2](0.5)[Na(18c6)(py)(1.5)][Na(1.5)Nd(dddt)3]}(infinity) (2) are composed of discrete [Na(18c6)(py)x]+ cations and polymeric anionic two-dimensional layers in which the Nd(dddt)3 units are linked to three neighbors by sodium atoms to form a honeycomb network. Analysis of the temperature dependence of the molar magnetic susceptibility of 2 shows that chiMT decreases from 1.63 cm3 K mol(-1) at 300 K down to 0.6 cm3 K mol(-1) at 5 K, due to the crystal-field splitting of the (4)I(9/2) free-ion state. Complexes {[Na3(18c6)(1.5)Nd(dddt)3(THF)].3THF}(infinity) (3.3THF) and {[K3(18c6)(1.5)Nd(dddt)3(py)].3py}(infinity) (4.3py) exhibit neutral polymeric layers with the Nd(dddt)3 units linked by M2(18c6) fragments. In the cerium compound {[Na2(18c6)Na(py)2Ce(dddt)3(py)].3py}(infinity) (5.3py), each Ce(dddt)3 unit is linked to two neighbors only by Na2(18c6) moieties, giving infinite zigzag chains.  相似文献   

7.
The compounds [K(Q)][IrH(4)(PR(3))(2)] (Q = 18-crown-6, R = Ph, (i)Pr, Cy; Q = aza-18-crown-6, R = (i)Pr; Q = 1,10-diaza-18-crown-6, R = Ph, (i)Pr, Cy; Q = cryptand-222, R = (i)Pr, Cy) were formed in the reactions of IrH(5)(PR(3))(2) with KH and Q. In solution, the stereochemistry of the salts of [IrH(4)(PR(3))(2)](-) is surprisingly sensitive to the countercation: either trans as the potassium cryptand-222 salts (R = Cy, (i)Pr) or exclusively cis (R = Cy, Ph) as the crown- and azacrown-potassium salts or a mixture of cis and trans (R = (i)Pr). There is IR evidence for protonic-hydridic bonding between the NH of the aza salts and the iridium hydride in solution. In single crystals of [K(18-crown-6)][cis-IrH(4)(PR(3))(2)] (R = Ph, (i)Pr) and [K(aza-18-crown-6)][cis-IrH(4)(P(i)Pr(3))(2)], the potassium bonds to three hydrides on a face of the iridium octahedron according to X-ray diffraction studies. Significantly, [K(1,10-diaza-18-crown-6)][trans-IrH(4)(P(i)Pr(3))(2)] crystallizes in a chain structure held together by protonic-hydridic bonds. In [K(1,10-diaza-18-crown-6)][cis-IrH(4)(PPh(3))(2)], the potassium bonds to two hydrides so that one NH can form an intra-ion-pair protonic-hydridic hydrogen bond while the other forms an inter-ion-pair NH.HIr hydrogen bond to form chains through the lattice. Thus, there is a competition between the potassium and NH groups in forming bonds with the hydrides on iridium. The more basic P(i)R(3) complex has the lower N-H stretch in the IR spectrum because of stronger N[bond]H...HIr hydrogen bonding. The trans complexes have very low Ir-H wavenumbers (1670-1680) due to the trans hydride ligands. The [K(cryptand)](+) salt of [trans-IrH(4)(P(i)Pr(3))(2)](-) reacts with WH(6)(PMe(2)Ph)(3) (pK(alpha)(THF) 42) to give an equilibrium (K(eq) = 1.6) with IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-) while the same reaction of WH(6)(PMe(2)Ph)(3) with the [K(18-crown-6)](+) salt of [cis-IrH(4)(P(i)Pr(3))(2)](-) has a much larger equilibrium constant (K(eq) = 150) to give IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-); therefore, the tetrahydride anion displays an unprecedented increase (about 100-fold) in basicity with a change from [K(crypt)](+) to [K(crown)](+) countercation and a change from trans to cis stereochemistry. The acidity of the pentahydrides decrease in THF as IrH(5)(P(i)Pr(3))(2)/[K(crypt)][trans-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 42) > IrH(5)(PCy(3))(2)/[K(crypt)][trans-IrH(4)(PCy(3))(2)] (pK(alpha)(THF) = 43) > IrH(5)(P(i)Pr(3))(2)/[K(crown)][cis-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 44) > IrH(5)(PCy(3))(2)/[K(crown)][cis-IrH(4)(PCy(3))(2)]. The loss of PCy(3) from IrH(5)(PCy(3))(2) can result in mixed ligand complexes and H/D exchange with deuterated solvents. Reductive cleavage of P-Ph bonds is observed in some preparations of the PPh(3) complexes.  相似文献   

8.
The reaction of Sm[N(TMS)(2)](2)(THF)(2) with H(2)L (L = 1,4-bis(2-hydroxy-3-tert-butyl-5-methyl-benzyl)-piperazidine) afforded [SmL(HMPA)(2)](4)·8THF 2 upon treatment with 2 equivalents of HMPA (hexamethyl phosphoric triamide). X-ray crystallographic analysis of 2 reveals a tetrametallic macrocyclic structure, which represents the first example of a crystal structure of a Sm(II) complex stabilized by heteroatom bridged bis(phenolate) ligands. Reduction of carbodiimides RNCNR (R = (i)Pr and Cy) by [SmL](2)(THF) 1, which was formed in situ by the reaction of Sm[N(TMS)(2)](2)(THF)(2) with H(2)L in THF, yielded the Sm(III) complex with an oxalamidinate ligand [LSm{(N(i)Pr)(2)CC(N(i)Pr)(2)}SmL]·THF 3 for (i)PrNCN(i)Pr and the Sm(III) complex with a diamidocarbene ligand [LSm(μ-CyNCNCy)SmL]·5.5THF 4 for CyNCNCy.  相似文献   

9.
An ionic heterometallic species [Y(DMF)(8)][Cu(4)(micro(3)-I)(2)(micro-I)(3)I(2)](1) was isolated from a solution of CuI, NH(4)I and YI(3)(Pr(i)OH)(4) in DMF-isopropoxyethanol, and was converted in a confined environment by progressive substitution of the DMF ligands with water molecules first into a 1D zig-zag structure [Y(DMF)(6)(H(2)O)(2)][Cu(7)(micro(4)-I)(3)(micro(3)-I)(2)(micro-I)(4)(I)](1infinity)(2) and finally into a 2D sheet [Y(DMF)(6)(H(2)O)(3)][Cu(I)(7)Cu(II)(2)(micro(3)-I)(8)(micro-I)(6)](2infinity)(3) by H-bond templating.  相似文献   

10.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

11.
The U(IV) linear pentacyano metallocene [U(C(5)Me(5))(2)(CN)(5)][NEt(4)](3) reacted with 2 molar equivalents of pyridine N-oxide in THF or acetonitrile to give the U(VI) complex [UO(2)(C(5)Me(5))(CN)(3)][NEt(4)](2), the first uranyl species containing the cyclopentadienyl ligand; the crystal structure revealed that the steric effects of the (C(5)Me(5)) ligand force the {UO(2)}2+ ion to deviate from linearity.  相似文献   

12.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

13.
Three new cation-cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO(2)py(5))(KI(2)py(2))](n) (1) with the Schiff base ligands salen(2-), acacen(2-), and salophen(2-) (H(2)salen = N,N'-ethylene-bis(salicylideneimine), H(2)acacen = N,N'-ethylenebis(acetylacetoneimine), H(2)salophen = N,N'-phenylene-bis(salicylideneimine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen(2-) in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetranuclear complexes, {[UO(2)(acacen)](4)[μ(8)-](2)[K([18]C-6)(py)](2)} (3) and {[UO(2)(acacen)](4)[μ(8)-]}?2?[K([222])(py)] (4), {[UO(2)(salophen)](4)[μ(8)-K](2)[μ(5)-KI](2)[(K([18]C-6)]}?2?[K([18]C-6)(thf)(2)]?2?I (5), and {[UO(2)(salen)(4)][μ(8)-Rb](2)[Rb([18]C-6)](2)} (9) ([222] = [222]cryptand, py = pyridine), presenting a T-shaped cation-cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetranuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U(V)O(2)(salen)(py)][Cp*(2)Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation-cation complexes. The nature of the cation plays a key role in the preparation of stable cation-cation complexes. Stable tetranuclear complexes form in the presence of K(+) and Rb(+), whereas Li(+) leads to disproportionation. A new uranyl-oxo cluster was isolated from this reaction. The reaction of [U(V)O(2)(salen)(py)][Cp*(2)Co] (Cp* = pentamethylcyclopentadienyl) with its U(VI) analogue yields the oxo-functionalized dimer [UO(2)(salen)(py)](2)[Cp*(2)Co] (8). The reaction of the {[UO(2)(salen)(4)][μ(8)-K](2)[K([18]C-6)](2)} tetramer with protons leads to disproportionation to U(IV) and U(VI) species and H(2)O confirming the crucial role of the proton in the U(V) disproportionation.  相似文献   

14.
The solvated yttrium iodide precursors [Y(L)(8)]I(3) (L = DMSO or DMF), prepared in situ by stirring YI(3)(Pr(i)OH)(4) in DMSO or DMF, react with CuI in the presence of NH(4)I to give ionic hetero-metallic species [Y(DMSO)(8)][Cu(2)(mu-I)I(4)] (1) and [Y(DMF)(8)][Cu(4)(mu(3)-I)(2)(mu-I)(3)I(2)] (2) in excellent yields. Re-crystallization of 1 from DMF afforded the mixed-solvate complex [Y(DMSO)(6)(DMF)(2)][CuI(3)][I] (3). Compounds 2 and 3 undergo unique crystal-to-crystal transformation via progressive substitution of DMF by water molecules in a confined, solvent-free environment. Thus, crystals of 3 transform into [Y(DMSO)(6)(H(2)O)(2)][CuI(3)][I] (4), whereas a discrete ion-pair assembly of 2 is first converted into a 1-D zig-zag structure [Y(DMF)(6)(H(2)O)(2)](3+)[Cu(7)(mu(4)-I)(3)(mu(3)-I)(2)(mu-I)(4)(I)](1infinity)(3-) (5) and finally into a 2-D sheet containing mixed-valent copper atoms, [Y(DMF)(6)(H(2)O)(3)](3+)[Cu(I)(7)Cu(II)(2)(mu(3)-I)(8)(mu-I)(6)](2infinity)(3-) (6). The bi- and tetrafurcate H-bonding between water ligands on yttrium and iodides of the Cu-I cluster plays a pivotal role in the evolution of structures 4-6. Formation of a wide range of iodocuprate structures in 1-6, from discrete mono-, di- or tetranuclear units to one- and two-dimensional extended arrays, reflects the influence of solvated yttrium cations on the nuclearity and dimensionality of Cu-I clusters. TG-DTA-MS studies and DFT calculations for these complexes have also been carried out in order to determine their thermal stability and have insight about aforesaid transformations.  相似文献   

15.
Treatment of the titanium(IV) alkoxide complex [Ti(Oi Pr)(OC6Me2H(2)CH2)3N] (2) with BH3.THF, as part of a study into the utility and reactivity of (2) in the metal mediated borane reduction of acetophenone, results in alkoxide-hydride exchange and formation of the structurally characterised titanium(iv) tetrahydroborate complex [Ti{BH4}(OC6Me2H2CH2)3N] (3). Complex (3) readily undergoes reduction to form the isolable titanium(III) species [Ti(OC6Me2H2CH2)3N]2 (4). Reaction of (2) with B(C6F5)3 results in formation of the Lewis acid adduct [Ti(OC6Me2H2CH2)3N][HO.B(C6F5)3] (5). In comparison, treatment of the less sterically encumbered alkoxide Ti(Oi Pr)4 with B(C6F5)3 results in alkoxide-aryl exchange and formation of the organometallic titanium complex [Ti(Oi Pr)3(C6F5)]2 (6). The molecular structures of 3, 4, 5 and 6 have been determined by X-ray diffraction.  相似文献   

16.
The reaction between 1.5 equiv of elemental iodine and rare earth metals in powder form in THF at room temperature gives the rare earth triiodides LnI(3)(THF)(n)() in good yields. Purification by Soxhlet extraction of the crude solids with THF reliably gives the THF adducts LnI(3)(THF)(4) [Ln = La, Pr] and LnI(3)(THF)(3.5) [Ln = Nd, Sm, Gd, Dy, Er, Tm, Y] as microcrystalline solids. X-ray crystallography reveals that the early, larger lanthanide iodide PrI(3)(THF)(4) crystallizes as discrete molecules having a pentagonal bipyramidal structure, whereas the later, smaller lanthanide iodides LnI(3)(THF)(3.5) [Ln = Nd, Gd, Y] crystallize as solvent-separated ion pairs [LnI(2)(THF)(5)][LnI(4)(THF)(2)] in which the cations adopt a pentagonal bipyramidal geometry and the anions adopt an octahedral geometry in the solid state.  相似文献   

17.
M(eta(6)-arene)(2) species (M = Cr, arene = 1,3,5-Me(3)C(6)H(3); M = Mo, arene = 1,3,5-Me(3)C(6)H(3), 1,3,5-(i)Pr(3)C(6)H(3)), have been prepared by a modified Fischer-Hafner synthesis or by metal vapour techniques. The reaction of Cr(eta(6)-1,3,5-Me(3)C(6)H(3))(2) with the fulvene derivatives pentacarbomethoxycyclopentadiene (pcmcpH), 1-benzoyl-6-hydroxy-6-phenylfulvene (dbcpH), or 1-benzoyl-3-nitro-6-hydroxy-6-phenylfulvene (dbncpH) proceeds with evolution of dihydrogen and formation of the ionic derivatives [Cr(eta(6)-1,3,5-Me(3)C(6)H(3))(2)][E], where E = pcmcp, dbcp, or dbncp. Mo(eta(6)-arene)(2) derivatives (arene = toluene, 1,3,5-Me(3)C(6)H(3), 1,3,5-(i)Pr(3)C(6)H(3)) are oxidized to [Mo(eta(6)-arene)(2)](+) by pcmcpH. The crystal and molecular structures of [M(eta(6)-1,3,5-R(3)C(6)H(3))(2)][pcmcp] (M = Cr, R = Me; M = Mo, R = Me, (i)Pr) have been solved by X-ray single crystal diffraction.  相似文献   

18.
The synthesis and characterization of nine new heteroleptic alkoxides of niobium is described. Metathesis reactions of Nb(2)Cl(10) with (t)BuCH(2)OH and pyridine (py) or 4-dimethylaminopyridine (DMAP) affords monomeric octahedral complexes Nb(OCH(2)(t)Bu)(5)py (1) and Nb(OCH(2)(t)Bu)(5)DMAP (2), respectively, in high yields (>60%). The same reaction with (t)BuOH resulted in a chloro functionalized alkoxide Nb(O(t)Bu)(4)pyCl (3) and could not be pushed to complete removal of remaining Cl(-) ligand. The introduction of a chelating bidental ligand 3,3,3-trifluoro-1-(pyridine-2-yl)propen-2-ol (2-PyCHCOHCF(3)) (4') in the dimeric framework of Nb(2)(O(i)Pr)(10) (4') produced a heteroleptic, monomeric niobium complex Nb(O(i)Pr)(4)(2-PyCHCOCF(3)) (4) with significantly enhanced stability and volatility. As a comparison to (4), five different heteroaryl systems (5-9) with the same side chain have been synthesized and examined in order to understand the influence upon physio-chemical properties. All the new compounds (1-9) have been characterized by microanalysis, variable temperature multinuclear NMR spectroscopy, mass spectrometry, thermal analysis and single crystal X-ray diffraction studies ((3), (4) and (9)). The molecular structure of (3) revealed mononuclear species with Nb atoms present in the distorted octahedral environment of four (t)BuO, one chloride and one pyridine ligand. Compounds (4) and (9) consisting of four (i)PrO and a trifluoroheteroarylenolate exhibited a stronger distortion in the molecular geometry due to the rigidity of chelating β-alkenolate moiety.  相似文献   

19.
Addition of 2 equiv of LiNMe(2) to the bis(imino)pyridine ferrous dichloride, ((i)(Pr)PDI)FeCl(2) ((i)(Pr)PDI = (2,6-(i)()Pr(2)-C(6)H(3)N=CMe)(2)C(5)H(3)N), resulted in deprotonation of the chelate methyl groups, yielding the bis(enamide)pyridine iron dimethylamine adduct, ((i)(Pr)PDEA)Fe(NHMe(2)) ((i)(Pr)PDEA = (2,6-(i)Pr(2)-C(6)H(3)NC=CH(2))(2)C(5)H(3)N). Performing a similar procedure with KN(SiMe(3))(2) in THF solution afforded the corresponding bis(THF) adduct, ((i)(Pr)PDEA)Fe(THF)(2). ((i)(Pr)PDEA)Fe(NHMe(2)) has also been prepared by addition of the free amine to the iron dialkyl complex, ((i)(Pr)PDI)Fe(CH(2)SiMe(3))(2), implicating formation of a transient iron amide that is sufficiently basic to deprotonate the bis(imino)pyridine methyl groups. Deprotonation of the amine ligand in ((i)(Pr)PDEA)Fe(NHMe(2)) has been accomplished by addition of amide bases to afford the ferrous amide-ate complexes, [((i)(Pr)PDEA)Fe(mu-NMe(2))M] (M = Li, K).  相似文献   

20.
Reaction of [Ln(CH(2)SiMe(3))(2)(THF)(n)][BPh(4)] (Ln = Sc, Y, Lu ; n = 3, 4) with Li{B(NArCH)(2)}(THF)(2) (Ar = 2,6-C(6)H(3)(i)Pr(2)) formed the first group 3 and lanthanide boryl compounds, Sc{B(NArCH)(2)}(CH(2)SiMe(3))(2)(THF) and Ln{B(NArCH)(2)}(CH(2)SiMe(3))(2)(THF)(2) (Ln = Y, Lu), which contain two-center, two-electron Ln-B σ bonds. All of these systems were crystallographically characterized. Density functional theory analysis of the Ln-B bonding found it to be predominantly ionic, with covalent character in the σ-bonding Ln-B HOMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号