首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.  相似文献   

2.
Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.  相似文献   

3.
In a network of neuronal oscillators with time-delayed coupling, we uncover a phenomenon of enhancement of neural synchrony by time delay: a stable synchronized state exists at low coupling strengths for significant time delays. By formulating a master stability equation for time-delayed networks of Hindmarsh-Rose neurons, we show that there is always an extended region of stable synchronous activity corresponding to low coupling strengths. Such synchrony could be achieved in the undelayed system only by much higher coupling strengths. This phenomenon of enhanced neural synchrony by delay has important implications, in particular, in understanding synchronization of distant neurons and information processing in the brain.  相似文献   

4.
We present here some studies on noise-induced order and synchronous firing in a system of bidirectionally coupled generic type-I neurons. We find that transitions from unsynchronized to completely synchronized states occur beyond a critical value of noise strength that has a clear functional dependence on neuronal coupling strength and input values. For an inhibitory-excitatory (IE) synaptic coupling, the approach to a partially synchronized state is shown to vary qualitatively depending on whether the input is less or more than a critical value. We find that introduction of noise can cause a delay in the bifurcation of the firing pattern of the excitatory neuron for IE coupling.  相似文献   

5.
王海侠  陆启韶  石霞 《中国物理 B》2010,19(6):60509-060509
It is crucially important to study different synchronous regimes in coupled neurons because different regimes may correspond to different cognitive and pathological states. In this paper, phase synchronization and its transitions are discussed by means of theoretical and numerical analyses. In two coupled modified Morris--Lecar neurons with a gap junction, we show that the occurrence of phase synchronization can be investigated from the dynamics of phase equation, and the analytical synchronization condition is derived. By defining the phase of spike and burst, the transitions from burst synchronization to spike synchronization and then toward nearly complete synchronization can be identified by bifurcation diagrams, the mean frequency difference and time series of neurons. The simulation results suggest that the synchronization of bursting activity is a multi-time-scale phenomenon and the phase synchronization deduced by the phase equation is actually spike synchronization.  相似文献   

6.
The dynamics of two coupled piece-wise linear one-dimensional monostable maps is investigated. The single map is associated with Poincare section of the FitzHugh-Nagumo neuron model. It is found that a diffusive coupling leads to the appearance of chaotic attractor. The attractor exists in an invariant region of phase space bounded by the manifolds of the saddle fixed point and the saddle periodic point. The oscillations from the chaotic attractor have a spike-burst shape with anti-phase synchronized spiking.  相似文献   

7.
王青云  陆启韶  王海侠 《中国物理》2005,14(11):2189-2195
The synchronization transition in two coupled chaotic Morris-Lecar (ML) neurons with gap junction is studied with the coupling strength increasing. The conditional Lyapunov exponents, along with the synchronization errors are calculated to diagnose synchronization of two coupled chaotic ML neurons. As a result, it is shown that the increase in the coupling strength leads to incoherence, then induces a transition process consisting of three different synchronization states in succession, namely, burst synchronization, near-synchronization and embedded burst synchronization, and achieves complete synchronization of two coupled neurons finally. These sequential transitions to synchronization reveal a new transition route from incoherence to complete synchronization in coupled systems with multi-time scales.  相似文献   

8.
We study synchronization transitions and pattern formation on small-world networks consisting of Morris-Lecar excitable neurons in dependence on the information transmission delay and the rewiring probability. In addition, networks formed via gap junctional connections and coupling via chemical synapses are considered separately. For gap-junctionally coupled networks we show that short delays can induce zigzag fronts of excitations, whereas long delays can further detriment synchronization due to a dynamic clustering anti-phase synchronization transition. For the synaptically coupled networks, on the other hand, we find that the clustering anti-phase synchronization can appear as a direct consequence of the prolongation of information transmission delay, without being accompanied by zigzag excitatory fronts. Irrespective of the coupling type, however, we show that an appropriate small-world topology can always restore synchronized activity if only the information transmission delays are short or moderate at most. Long information transmission delays always evoke anti-phase synchronization and clustering, in which case the fine-tuning of the network topology fails to restore the synchronization of neuronal activity.  相似文献   

9.
We analyze a minimal model of a population of identical oscillators with a nonlinear coupling—a generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized dynamics: self-organized bunch states and self-organized quasiperiodic dynamics. The analysis based on the Watanabe-Strogatz ansatz allows us to describe the self-organized bunch states in any finite ensemble as a set of equilibria, and the self-organized quasiperiodicity as a two-frequency quasiperiodic regime. An analytic solution in the thermodynamic limit of infinitely many oscillators is also discussed.  相似文献   

10.
This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results.  相似文献   

11.
We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase(BS), spike phase(SS),complete(CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameterdependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength.  相似文献   

12.
We study the influence of coupling strength and network topology on synchronization behavior in pulse-coupled networks of bursting Hindmarsh-Rose neurons. Surprisingly, we find that the stability of the completely synchronous state in such networks only depends on the number of signals each neuron receives, independent of all other details of the network topology. This is in contrast with linearly coupled bursting neurons where complete synchrony strongly depends on the network structure and number of cells. Through analysis and numerics, we show that the onset of synchrony in a network with any coupling topology admitting complete synchronization is ensured by one single condition.  相似文献   

13.
A general method is presented for the analysis of the asynchronous state in networks of identical, all-to-all coupled, limit-cycle oscillators of arbitrary dimension and with arbitrarily strong coupling. It is shown that, with strong coupling, this state can be destabilized in directions orthogonal to the limit cycle, which may change the units' behavior qualitatively. An example, involving integrate and fire neurons with spike adaptation, exhibits a bifurcation to a synchronized bursting state for strong feedback coupling. The analysis can account for transitions that cannot be studied in the commonly used phase-coupled approximation.  相似文献   

14.
15.
Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96 (2006) 145701], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≤α≤1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for αα<1. At α=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.  相似文献   

16.
My objective of this study was to find evidence of chaotic itinerancy in human brains by means of noninvasive recording of the electroencephalogram (EEG) from the scalp of normal subjects. My premise was that chaotic itinerancy occurs in sequences of cortical states marked by state transitions that appear as temporal discontinuities in neural activity patterns. I based my study on unprecedented advances in spatial and temporal resolution of the phase of oscillations in scalp EEG. The spatial resolution was enhanced by use of a high-density curvilinear array of 64 electrodes, 189 mm in length, with 3 mm spacing. The temporal resolution was advanced to the limit provided by the digitizing step, here 5 ms, by use of the Hilbert transform. The numerical derivative of the analytic phase revealed plateaus in phase that lasted on the order of 0.1 s and repeated at rates in the theta (3-7 Hz) or alpha (7-12 Hz) ranges. The plateaus were bracketed by sudden jumps in phase that usually took place within 1 to 2 digitizing steps. The jumps were commonly synchronized in each cerebral hemisphere over distances of up to 189 mm, irrespective of the orientation of the array. The jumps were usually not synchronized across the midline separating the hemisphere or across the sulcus between the frontal and parietal lobes. I believe that the widespread synchrony of the jumps in analytic phase manifest a metastable cortical state in accord with the theory of self-organized criticality. The jumps appear to be subcritical bifurcations. They reflect the aperiodic evolution of brain states through sequences of attractors that on access support the experience of remembering.  相似文献   

17.
We analyze the effect of synchronization in networks of chemically coupled multi-time-scale (spiking-bursting) neurons on the process of information transmission within the network. Although, synchronization occurs first in the slow time-scale (burst) and then in the fast time-scale (spike), we show that information can be transmitted with low probability of errors in both time scales when the bursts become synchronized. Furthermore, we show that for networks of non-identical multi-time-scales neurons, complete synchronization is no longer possible, but instead burst phase synchronization. Our analysis shows that clusters of burst phase synchronized neurons are very likely to appear in a network for parameters far smaller than the ones for which the onset of burst phase synchronization in the whole network takes place.  相似文献   

18.
We consider a variant of two coupled Van der Pol oscillators with both attractive and repulsive mean-field interactions. In the presence of attractive coupling, the system is in the complete synchrony, while repulsive coupling shows anti-synchronization state leading to suppression of oscillations with increasing interaction strength. The coupled system with both attractive and repulsive interactions shows competitive tendencies of being complete synchronization and anti-synchronization resulting in the stabilization of the fixed point. We have also studied the effect of the damping coefficient of the VdP oscillator on the nature of the transition from oscillatory to a steady-state. These oscillators stabilize to unstable equilibrium point or coupling dependent inhomogeneous steady state via second or first-order transitions respectively depending upon the damping coefficient and coupling strength. These transitions are analyzed in the parameter plane by analytical and numerical studies of the two coupled Van der Pol oscillators.  相似文献   

19.
Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process.  相似文献   

20.
Gonadotropin-releasing hormone (GnRH) is a decapeptide secreted by GnRH neurons located in the hypothalamus. It is responsible for the onset of puberty and the regulation of hormone release from the pituitary. There is a strong evidence suggesting that GnRH exerts an autocrine regulation on its own release via three types of G-proteins [L.Z. Krsmanovic, N. Mores, C.E. Navarro, K.K. Arora, K.J. Catt, An agonist-induced switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile neuropeptide secretion, Proc. Natl. Acad. Sci. 100 (2003) 2969-2974]. A mathematical model based on this proposed mechanism has been developed and extended to explain the synchrony observed in GnRH neurons by incorporating the idea of a common pool of GnRH [A. Khadra, Y.X. Li, A model for the pulsatile secretion of gonadotropin-releasing hormone from synchronized hypothalamic neurons, Biophys. J. 91 (2006) 74-83]. This type of coupling led to a very robust synchrony between these neurons. We aim in this paper to reduce the one cell model to a two-variable model using quasi-steady state (QSS) analysis, to further examine its dynamics analytically and geometrically. The concept of synchrony of a heterogeneous population will be clearly defined and established for certain cases, while, for the general case, two different types of phases are introduced to gain more insight on how the model behaves. Bifurcation diagrams for certain parameters in the one cell model are also shown to explain some of the phenomena observed in a coupled population. A comparison between the population model and an averaged two-variable model is also conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号