首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We study the correlation between CP violation in neutrino oscillations and leptogenesis in the framework with two heavy Majorana neutrinos and three light neutrinos. Among three unremovable CP phases, a heavy Majorana phase contributes to leptogenesis. We show how the heavy Majorana phase contributes to Jarlskog determinant J as well as neutrinoless double beta decay by identifying a low energy CP-violating phase which signals the CP-violating phase for leptogenesis. For some specific cases of the Dirac mass term of neutrinos, a direct relation between lepton number asymmetry and J is obtained. We also study the effect coming from the phases which are not related to leptogenesis.  相似文献   

2.
We present a model of leptogenesis that preserves lepton number. The model maintains the important feature of more traditional leptogenesis scenarios: The decaying particles that provide the CP violation necessary for baryogenesis also provide the explanation for the smallness of the neutrino Yukawa couplings. This model clearly demonstrates that, contrary to conventional wisdom, neutrinos need not be Majorana in nature in order to help explain the baryon asymmetry of the universe.  相似文献   

3.
In type I seesaw models with flavor symmetries accounting for the lepton mixing angles the CP asymmetry in right-handed neutrino decays vanishes in the limit in which the mixing pattern is exact. We study the implications that additional degrees of freedom from type II seesaw may have for leptogenesis in such a limit. We classify in a model independent way the possible realizations of type I and II seesaw schemes, differentiating between classes in which leptogenesis is viable or not. We point out that even with the interplay of type I and II seesaws there are generic classes of minimal models in which the CP asymmetry vanishes. Finally we analyze the generation of the lepton asymmetry by solving the corresponding kinetic equations in the general case of a mild hierarchy between the light right-handed neutrino and the scalar triplet masses. We identify the possible scenarios in which leptogenesis can take place.  相似文献   

4.
If the baryon asymmetry of the Universe is produced by leptogenesis, CP violation is required in the lepton sector. In the seesaw extension of the standard model with three hierarchical right-handed neutrinos, we show that the baryon asymmetry is insensitive to the Pontecorvo-Maki-Nagakawa-Sakata phases: thermal leptogenesis can work for any value of the observable phases. This result was well known when there were no flavor effects in leptogenesis; we show that it remains true when flavor effects are included.  相似文献   

5.
6.
7.
We investigate the possibility of low-scale leptogenesis in the minimal supersymmetric standard model extended with right-handed (s)neutrinos. We demonstrate that successful leptogenesis can be easily achieved at a scale as low as approximately TeV where lepton number and CP violation comes from soft supersymmetry breaking terms. The scenario is shown to be compatible with neutrino masses data.  相似文献   

8.
We have studied extensively phenomenological implications in a specific model of brane inflation driven by background supergravity (Choudhury and Pal, 2011) [1], via thermal history of the universe and leptogenesis pertaining to the particle physics phenomenology of the early universe. Using the one loop corrected inflationary potential we have investigated for the analytical expression as well as the numerical estimation for brane reheating temperature for standard model particles. This results in some novel features of reheating from this type of inflation which have serious implications in the production of heavy Majorana neutrinos needed for leptogenesis through the reheating temperature. We have also derived the expressions for the gravitino abundance during reheating and radiation dominated era. We have further estimated different parameters at the epoch of phase transition and revealed their salient features. At the end we have explicitly given an estimate of the amount of CP violation through the effective CP phase which is related to baryon asymmetry as well as gravitino dark matter abundance.  相似文献   

9.
In supersymmetric models with lepton-number violation, hence also R-parity violation, it is easy to have realistic neutrino masses, but then leptogenesis becomes difficult to achieve. After explaining the general problems involved, we study the details of a model which escapes these constraints and generates a lepton asymmetry, which gets converted into the present observed baryon asymmetry of the Universe through the electroweak sphalerons. This model requires the presence of certain nonholomorphic R-parity violating terms. For completeness we also present the most general R-parity violating Lagrangian with soft nonholomorphic terms and study their consequences for the charged-scalar mass matrix. New contributions to neutrino masses in this scenario are discussed.  相似文献   

10.
Thermal leptogenesis explains the observed matter–antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff–Baym equations. Origin of the asymmetry is the departure from equilibrium of the statistical propagator of the heavy Majorana neutrino, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green’s functions without referring to “number densities”. Compared to Boltzmann and quantum Boltzmann equations, the crucial difference are memory effects, rapid oscillations much faster than the heavy neutrino equilibration time. These oscillations strongly suppress the generated lepton asymmetry, unless the standard model gauge interactions, which cause thermal damping, are properly taken into account. We find that these damping effects essentially compensate the enhancement due to quantum statistical factors, so that finally the conventional Boltzmann equations again provide rather accurate predictions for the lepton asymmetry.  相似文献   

11.
Leptogenesis is an appealing framework to account for the baryon asymmetry in the universe. To this end physics beyond the standard model is demanded. In this paper we investigate the possibility to attain successful leptogenesis with composite Majorana neutrinos. We work in the framework of effective gauge-mediated and contact interactions without any reference to an underlying compositeness theory. This approach is the one adopted in all current experimental searches for composite fermions at colliders. In the case of gauge-mediated interactions, we calculate the CP asymmetry in heavy composite neutrino decays. Both the direct and the indirect CP asymmetry are derived and resonant leptogenesis is also discussed. We find that the Sakharov conditions can be met and, for some choice of the parameters, the correct order of magnitude of the baryon asymmetry is reproduced.  相似文献   

12.
13.
Comments on CPT     
I comment on recent experimental results in neutrino physics that are often invoked in the context of the violation of CPT. Even if the hint on the difference of oscillation parameters for neutrinos and antineutrinos is correct, the interpretation in terms of CPT violation is premature, as other CPT-invariant physics may often mimic the same outcome. I also comment on where in nature CPT violation may have played its role, and review the ideas related to the spontaneous generation of the baryon asymmetry of the Universe. I argue that the most promising way of generating baryon asymmetry using CPT violation is the equilibrium leptogenesis, tilted towards particles by effective dimension 5 CPT-odd operators.  相似文献   

14.
15.
We consider the minimal supersymmetric triplet seesaw model as the origin of neutrino masses and mixing as well as of the baryon asymmetry of the Universe, which is generated through soft leptogenesis employing a CP-violating phase and a resonant behavior in the supersymmetry breaking sector. We calculate the full gauge-annihilation cross section for the Higgs triplets, including all relevant supersymmetric intermediate and final states, as well as coannihilations with the fermionic superpartners of the triplets. We find that these gauge annihilation processes strongly suppress the resulting lepton asymmetry. As a consequence of this, successful leptogenesis can occur only for a triplet mass at the TeV scale, where the contribution of soft supersymmetry breaking terms enhances the CP and lepton asymmetry. This opens up an interesting opportunity for testing the model in future colliders.  相似文献   

16.
In the context of the minimal seesaw framework, we discuss the implications of Dirac and Majorana mass matrices in which two properties coexist, namely, equalities among matrix elements and texture zeros. Among the large number of general possibilities, only 12 patterns are found to be consistent with the global neutrino oscillation data at the level of the most minimal number of free parameters. The predictions of the allowed textures for mass hierarchy, θ13θ13 and effective mass governing neutrino-less double beta decay are discussed. We also explore the possibility of having non-zero CP violation for each allowed solution. We find that only one allowed solution can accommodate both low and high energy CP violation. We discuss the prediction of this solution for leptogenesis and explore the correlation, between leptogenesis and low energy CP violation.  相似文献   

17.
The triple-product correlations observable in ordinary neutron or nuclear beta decay are all naively T violating and can connect, through an assumption of CPT invariance, to constraints on sources of CP violation beyond the Standard Model. They are also spin dependent. In this context the study of radiative beta decay opens a new possibility, in that a triple-product correlation can be constructed from momenta alone. Consequently its measurement would constrain new spin-independent sources of CP violation. We will describe these in light of the size of the triple momentum correlation in the decay rate arising from electromagnetic final-state interactions in the Standard Model. Our expression for the corresponding T-odd asymmetry is exact in ${\cal O}(\alpha)$ up to terms of recoil order, and we evaluate it numerically under various kinematic conditions. We consider the pattern of the asymmetries in nuclear β decays and show that the asymmetry can be suppressed in particular cases, facilitating searches for new sources of CP violation in such processes.  相似文献   

18.
19.
We propose a new model for naturally realizing light Dirac neutrinos and explaining the baryon asymmetry of the universe through neutrinogenesis. To achieve these, we present a minimal construction which extends the Standard Model with a real singlet scalar, a heavy singlet Dirac fermion and a heavy doublet scalar besides three right-handed neutrinos, respecting lepton number conservation and a Z2Z2 symmetry. The neutrinos acquire small Dirac masses due to the suppression of weak scale over a heavy mass scale. As a key feature of our construction, once the heavy Dirac fermion and doublet scalar go out of equilibrium, their decays induce the CP asymmetry from the interference of tree-level processes with the radiative vertex corrections (rather than the self-energy corrections). Although there is no lepton number violation, an equal and opposite amount of CP asymmetry is generated in the left-handed and the right-handed neutrinos. The left-handed lepton asymmetry would then be converted to the baryon asymmetry in the presence of the sphalerons, while the right-handed lepton asymmetry remains unaffected.  相似文献   

20.
《Nuclear Physics B》2004,692(3):303-345
We study the scenario of thermal leptogenesis in which the leptonic asymmetries are resonantly enhanced through the mixing of nearly degenerate heavy Majorana neutrinos that have mass differences comparable to their decay widths. Field-theoretic issues arising from the proper subtraction of real intermediate states from the lepton-number-violating scattering processes are addressed in connection with an earlier developed resummation approach to unstable particle mixing in decay amplitudes. The pertinent Boltzmann equations are numerically solved after the enhanced heavy-neutrino self-energy effects on scatterings and the dominant gauge-mediated collision terms are included. We show that resonant leptogenesis can be realized with heavy Majorana neutrinos even as light as ∼1 TeV, in complete accordance with the current solar and atmospheric neutrino data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号