首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We demonstrate that if the dark matter (DM) in the Universe contains multiple components, the possible interactions between the DM components may convert the heavier DM components into lighter ones. It is then possible that the lightest DM component with an annihilation cross section significantly larger than that of the typical weakly interacting massive particle (WIMP) may lead to a relic density in agreement with cosmological observations, due to an enhancement of number density from the DM conversion process at late time after the thermal decoupling. This may provide an alternative source of boost factor relevant to the positron and electron excesses reported by the recent DM indirect search experiments.  相似文献   

2.
If the dark matter (DM), which is considered to constitute most of the mass of galaxies, is made of supersymmetric particles, the central region of our Galaxy should emit gamma rays produced by their annihilation. We use detailed models of the Milky Way to make accurate estimates of continuum gamma-ray fluxes. We argue that the most important effect, which was previously neglected, is the compression of the dark matter due to the infall of baryons to the galactic center: it boosts the expected signal by a factor 1000. To illustrate this effect, we computed the expected gamma fluxes in the minimal supergravity scenario. Our models predict that the signal could be detected at high confidence levels by imaging atmospheric C erenkov telescopes assuming that neutralinos make up most of the DM in the Universe.  相似文献   

3.
Primordial black holes (PBHs) accumulate weakly interacting massive particles (WIMPs) around them and form ultracompact minihalos (UCMHs), if the WIMP is a dominant component of the dark matter (DM). In this Letter, we discuss that the UCMHs seeded by the PBHs with sub-earth mass enhance the WIMP annihilation in the present Universe and can successfully explain the positron and/or electron excess in cosmic ray observed by PAMELA/Fermi experiments. The signal is very similar to that from a decaying dark matter, which can explain the PAMELA and/or Fermi anomaly without conflict with any constraints as long as the decay mode is proper. In this scenario, the boost factor can be as large as 105. In addition, we discuss testability of our scenario by gamma-ray point source and gravitational-wave experiments.  相似文献   

4.
In the scenario where the dark matter (DM) particles χχ pair annihilate through a resonance particle R, the constraint from DM relic density makes the corresponding cross section for DM-nuclei elastic scattering extremely small, and can be below the neutrino background induced by the coherent neutrino-nuclei scattering, which makes the DM particle beyond the reach of the conventional DM direct detection experiments. We present an improved analytical calculation of the DM relic density in the case of resonant DM annihilation for s- and p-wave cases and invesitgate the condition for the DM-nuclei scattering cross section to be above the neutrino background. We show that in Higgs-portal type models, for DM particles with s-wave annihilation, the spin-independent DM-nucleus scattering cross section is proportional to ΓR/mR, the ratio of the decay width and the mass of R. For a typical DM particle mass ~50 GeV, the condition leads to ΓR/mR ≥O(10-4). In p-wave annihilation case, the spin-independent scattering cross section is insensitive to ΓR/mR, and is always above the neutrino background, as long as the DM particle is lighter than the top quark. The real singlet DM model is discussed as a concrete example.  相似文献   

5.
Structure formation with cold dark matter (CDM) predicts halos with a central density cusp, which are observationally disfavored. If CDM particles have an annihilation cross section sigmav approximately 10(-29)(m/GeV) cm(2), then annihilations will soften the cusps. We discuss plausible scenarios for avoiding the early Universe annihilation catastrophe that could result from such a large cross section. The predicted scaling of core density with halo mass depends upon the velocity dependence of sigmav, and s-wave annihilation leads to a core density nearly independent of halo mass, which seems consistent with observations.  相似文献   

6.
Corrections to the spectra describing Jeans instability and acoustic vibrations due to the consideration of annihilation processes in the hydrodynamic model of the gravitationally neutral Universe are obtained. The problem of annihilation of galactic clusters and anticlusters arising at the stages of the formation of massive gravitational clusters in the period following recombination of charged particles of the early Universe is also discussed. By the example of spherical macroscopic objects, it is shown that gravitational repulsion between cluster and anticluster results in the impossibility of their annihilation due to the existence of the finite closest approach distance if the latter exceeds the distance between macrosphere centers.  相似文献   

7.
We propose to interpret the DAMPE electron excess at 1.5 Te V through scalar or Dirac fermion dark matter(DM) annihilation with doubly charged scalar mediators that have lepton-specific Yukawa couplings. The hierarchy of such lepton-specific Yukawa couplings is generated through the Froggatt-Nielsen mechanism, so that the dark matter annihilation products can be dominantly electrons. Stringent constraints from LEP2 on intermediate vector boson production can be evaded in our scenarios. In the case of scalar DM, we discuss one scenario with DM annihilating directly to leptons and another scenario with DM annihilating to scalar mediators followed by their decays. We also discuss the Breit-Wigner resonant enhancement and the Sommerfeld enhancement in the case where the s-wave annihilation process is small or helicity-suppressed. With both types of enhancement, constraints on the parameters can be relaxed and new ways for model building can be opened in explaining the DAMPE results.  相似文献   

8.
Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.  相似文献   

9.
We review gamma-ray observations that constrain antimatter – both baryonic and leptonic - in the Universe. Antimatter is probed through ordinary matter, with the resulting annihilation gamma-rays providing indirect evidence for its presence. Although it is generally accepted that equal amounts of matter and antimatter have been produced in the Big Bang, gamma-rays have so far failed to detect substantial amounts of baryonic antimatter in the Universe. Conversely, positrons are abundantly observed through their annihilation in the central regions of our Galaxy and, although a wealth of astrophysical sources are plausible, their very origin is still unknown. As both antimatter questions – the source of the Galactic positrons and the baryon asymmetry in the Universe - can be investigated through the low energy gamma-ray channel, the mission concept of a dedicated space telescope is sketched out.  相似文献   

10.
As the largest mass concentrations in the local Universe, nearby clusters of galaxies and their central galaxies are prime targets in searching for indirect signatures of dark matter annihilation (DMA). We seek to constrain the dark matter annihilation emission component from multi-frequency observations of the central galaxy of the Virgo cluster. The annihilation emission component is modeled by the prompt and inverse-Compton gamma rays from the hadronization of annihilation products from generic weakly interacting dark matter particles. This component is fitted to the excess of the observed data above the spectral energy distribution (SED) of the jet in M87, described with a best-fit synchrotron-self-Compton (SSC) spectrum. While this result is not sufficiently significant to claim a detection, we emphasize that a dark matter “double hump signature” can be used to unambiguously discriminate the dark matter emission component from the variable jet-related emission of M87 in future, more extended observation campaigns.  相似文献   

11.
Recently, many new dwarf spheroidal satellites(dSphs) have been discovered by the Dark Energy Survey(DES). These dSphs are ideal candidates for probing for gamma-ray emissions from dark matter(DM) annihilation.However, no significant signature has been found by the Fermi-LAT dSph observations. In this work, we reanalyze the Fermi-LAT Pass 8 data from the direction of Reticulum II, where a slight excess has been reported by some previous studies. We treat Reticulum II(DES J0335.6-5403) as a spatially extended source, and find that no significant gamma-ray signature is observed. Based on this result, we set upper-limits on the DM annihilation cross section.  相似文献   

12.
A mechanism is identified whereby dark matter (DM) in protostellar halos dramatically alters the current theoretical framework for the formation of the first stars. Heat from neutralino DM annihilation is shown to overwhelm any cooling mechanism, consequently impeding the star formation process and possibly leading to a new stellar phase. A "dark star" may result: a giant ( greater, similar 1 AU) hydrogen-helium star powered by DM annihilation instead of nuclear fusion. Observational consequences are discussed.  相似文献   

13.
Recent direct detection experiments of Dark Matter (DM), CoGeNT and DAMA implicate a light DM of a few GeV. Such a light DM would generate a large amount of anti-proton since suppression for anti-proton flux from DM annihilation is ineffective. We discuss whether a light dark matter with mass of 5–15 GeV, which is especially in favor of the recent experiments reported by CoGeNT, is compatible with the anti-proton no excess in the cosmic-ray. In view of the direct detection of DM and no anti-proton excess in the cosmic-ray both, we show that a Dirac DM is favored than a scalar one since there is no s-wave of the annihilation cross section for the Dirac DM. A large elastic cross section for direct detection can be obtained through the additional light Higgs exchange. We show an allowed region that simultaneously satisfies the DM relic density, the elastic cross section favored by CoGeNT and also the constraint of HLZZHLZZ coupling of the light Higgs boson by LEP.  相似文献   

14.
15.
We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments. The γ-ray flux is computed from DM annihilation in this framework and is then compared with the Fermi-LAT observations from galactic centre region and Fermi bubble.  相似文献   

16.
Many studies have shown that either the nearby astrophysical source or dark matter(DM)annihilation/decay can be used to explain the excess of high energy cosmic ray(CR)e~±,which is detected by many experiments,such as PAMELA and AMS-02.Recently,the dark matter particle explorer(DAMPE)collaboration has reported its first result of the total CR e~±spectrum from 25 Ge V to 4.6 Te V with high precision.In this work,we study the DM annihilation and pulsar interpretations of this result.We show that the leptonic DM annihilation channels toτ~+τ~-,4μ,4τ,and mixed charged lepton final states can well explain the DAMPE e~±spectrum.We also find that the mixed charged leptons channel would lead to a sharp drop structure at~Te V.However,the ordinary DM explanations have been almost excluded by the constraints from the observations of gamma-ray and CMB,unless some exotic DM models are introduced.In the pulsar scenario,we analyze 21 nearby known pulsars and assume that one of them dominantly contributes to the high energy CR e~±spectrum.Involving the constraint from the Fermi-LAT observation of the e~±anisotropy,we find that two pulsars could explain the DAMPE e~±spectrum.Our results show that it is difficult to discriminate between the DM annihilation and single pulsar explanations of high energy e~±with the current DAMPE result.  相似文献   

17.
Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which 1. all Galaxies in the Universe “disperse” from each other according to Hubble's law, 2. the “dispersion” of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, 3. for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximalinertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational “annihilation”. At the maximal value of inertial and gravitational potentials (= c2) the material mass is being completely “evaporated” transforming into radiation mass. The latter is being concentrated in the “horizon” of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is “wrapped” in a geon crown.  相似文献   

18.
The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator \(\sim y_{\alpha \chi }\overline{{L_{L_{\alpha }}}}\, H\, \chi \), which is also able to generate the correct abundance of DM in the Universe. Assuming that the cosmological background evolves according to the standard cosmological model, it follows that the rate of DM decay \(\Gamma _\chi \sim |y_{\alpha \chi }|^2\) needed to get the correct DM relic abundance (\(\Gamma _\chi \sim 10^{-58}\)) differs by many orders of magnitude with respect that one needed to explain the IceCube data (\(\Gamma _\chi \sim 10^{-25}\)), making the four-dimensional operator unsuitable. In this paper we show that assuming that the early Universe evolution is governed by a modified cosmology, the discrepancy between the two the DM decay rates can be reconciled, and both the IceCube neutrino rate and relic density can be explained in a minimal model.  相似文献   

19.
The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry Z 2 is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of S is achieved by the application of Z 2 symmetry on S. Considering S as a possible candidate of CDM, Boltzmann’s equation is solved to find the freeze-out temperature and relic density of S for Higgs mass 120 GeV in the scalar mass range 5 GeV to 1 TeV. As HHSS coupling δ 2 appearing in Lagrangian depends upon the value of scalar mass m S and Higgs mass m h, the m S???δ 2 parameter space has been constrained by using the Wilkinson microwave anisotropy probe (WMAP) limit on the relic density of DM in the Universe and the results of recent ongoing DM direct search experiments, namely CDMS-II, CoGeNT, DAMA, EDELWEISS-II, XENON-10 and XENON-100. From such analyses, two distinct mass regions are found (a lower and higher mass domain) for such a DM candidate that satisfy both the WMAP limit and the experimental results considered here. The possible differential direct detection rates and annual variation of total detection rates have been estimated for this scalar DM candidate S for two detector materials, namely Ge and Xe. Finally, the γ-ray flux has been calculated from the galactic centre due to annihilation of two 130 GeV scalar DM into two monoenergetic γ-rays.  相似文献   

20.
In this paper we study the effect of the anisotropic stress generated by neutrinos on the propagation of primordial cosmological gravitational waves. The presence of anisotropic stress, like the one generated by free-streaming neutrinos, partially absorbs the gravitational waves (GWs) propagating across the Universe. We find that in the standard case of three neutrino families, 22% of the intensity of the wave is absorbed, in fair agreement with previous studies. We have also calculated the maximum possible amount of damping, corresponding to the case of a flat Universe completely dominated by ultrarelativistic collisionless particles. In this case 43% of the intensity of the wave is absorbed. Finally, we have taken into account the effect of collisions, using a simple form for the collision term parameterized by the mean time between interactions, that allows to go smoothly from the case of a tightly coupled fluid to that of a collisionless gas. The dependence of the absorption on the neutrino energy density and on the effectiveness of the interactions opens the interesting possibility of observing spectral features related to particular events in the thermal history of the Universe, like neutrino decoupling and electron–positron annihilation, both occurring at T ~ 1  MeV. GWS entering the horizon at that time will have today a frequency ν ~ 10−9 Hz, a region that is going to be probed by Pulsar Timing Arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号