首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用分子动力学方法对不同温度(25-120 ℃)及碱浓度(1:100-1:5, 摩尔比)下NaOH和KOH溶液中的氧气进行了模拟. 本文考察了NaOH及KOH溶液中溶剂-溶剂、氧气-溶剂及氧气-溶质的径向分布函数, 并采用爱因斯坦方程从均方位移曲线中计算得到了氧气及溶质离子的扩散系数. 结果显示随着碱浓度的升高, 氧气扩散系数逐渐减少; 在相同条件下, 氧气在NaOH溶液中扩散系数小于在KOH溶液中的扩散系数; 溶质离子扩散系数的变化规律与氧气一致. 通过与现有实验结果对比, 发现了分子动力学方法的可靠性及用于研究实验受限领域的优越性.  相似文献   

2.
曹乐  殷开梁 《化学通报》2022,85(5):619-623
在单分散金属纳米粒子制备过程中,金属烧结现象需要尽量避免。烧结与诸多因素有关,其中金属纳米粒子的表面性质和能量对烧结作用有着重要影响。本工作利用分子动力学,以4种不同粒径的金属Ni纳米团簇为研究对象,在COMPASS力场下对不同温度下其表面积、扩散性质、表面能以及比表面能等进行了计算。结果显示,随着温度从300K升至1000K,纳米团簇的表面积稍微增加了约5%,表面层扩散系数显著增加了约3个数量级,表面能量升高了约15%,同时表面层与体相的能量差明显增加了近3倍。比表面能定义为增加单位表面积所引起的表面能的增量。计算结果表明,700K时团簇的比表面能比镍熔点处的表面张力高出约3个数量级,预示着团簇烧结具有强大的推动力。比表面能随温度升高以及粒径增大而下降,与热力学原理相一致。  相似文献   

3.
在303~383 K和NPT系综和COMPASS力场下对β-1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(HMX)超晶胞初始结构的分子动力学模拟,得到常压下各温度的晶体平衡构型并发现分子的堆积方式不变;通过线性拟合求算出线膨胀系数与实验值相近,体现出明显的各向异性. 采用密度泛函理论方法对沿各晶轴方向膨胀率变化(100%~105%)的HMX单胞模型进行了总能计算,得到的能量变化率体现各向异性并与热膨胀系数值关联,建立了关联方程. 由此阐释了HMX晶体热膨胀各向异性的本质即特定的分子堆积模式.  相似文献   

4.
在303.15 K、313.15 K、323.15 K、333.15 K温度下,0-6 MPa压力范围内测定了甲烷在水-叔丁醇混合溶剂中的溶解度.溶剂中叔丁醇的摩尔分数(x_(TBA))从0到1.结果表明,在温度和溶剂组成一定条件下,甲烷的溶解度随其分区的增加而增大,随x_(TBA)的增加,在富水区内,甲烷的溶解度变化较缓慢,当x_(TBA)超过某值时,甲烷的溶解度随x_(TBA)的增加而增大,并且幅度较大;在x_(TBA)约为0-0.045范围内,甲烷的溶解度随温度增加而减小,x_(TBA)约在0.045-0.15范围内,溶解度随温度增加而增加,x_(TBA)约在0.15~1.0范围内,溶解度随温度增加而减小.根据溶解度与温度和溶剂组成的关系可以推测,在303.15-333.15 K、0-6 MPa范围内,水-叙丁醇混合溶剂中仍存在笼合物结构.根据溶解度与温度、压力的关系讨论了甲烷在此混合溶剂中的亨利常数、偏摩尔体积、标准溶解自由能、标准溶解焓和标准溶解熵.  相似文献   

5.
在“模拟雷雨条件下氮气和氧气反应的数字化实验探究”中,使用氧气传感器,出现“不降反升”的问题。查阅氧气传感器的型号,经过对其原理进行分析,得出其实质是利用原电池反应。为验证其反应原理,将氧气传感器分别放置在氯气和二氧化氮气体中测量并绘制数值变化曲线,对数值进行分析,提出使用氧气传感器时的注意事项。  相似文献   

6.
HMX/TATB复合材料弹性性能的MD模拟   总被引:2,自引:0,他引:2  
朱伟  肖继军  赵峰  姬广富  马秀芳  肖鹤鸣 《化学学报》2007,65(13):1223-1228
用分子动力学(MD)方法COMPASS力场, 分别在正则系综(NVT)和等温等压系综(NPT)下, 模拟计算了著名常用高能炸药HMX(环四甲撑四硝胺)与著名钝感炸药TATB (1,3,5-三氨基-2,4,6三硝基苯)所构成的混合体系在室温时的弹性性能和结合能. 结果表明, 在NVT和NPT两种系综下模拟所得结果呈平行一致的趋势; 与纯HMX相比, HMX/TATB复合材料的拉伸模量、体模量和剪切模量均有所下降; 在NVT系综下, 还完成了HMX/TATB混合体系的不同温度的MD模拟. 发现当温度在245~345 K范围时, 体系的刚性和弹性变化很小; 但当温度达到395 K时, 材料的刚性减弱, 柔性增强.  相似文献   

7.
采用巨正则系综的MonteCarlo方法(GCMC)模拟常温(T=303K)下,氮气和氧气在具有狭缝状膜孔的碳膜内的吸附.气体分子之间、气体分子与膜原子之间的相互作用均采用Shifted-Lennard-Jones势能模型.研究了303K和10MPa下,不同膜厚度和膜孔宽度时氧气在膜面和膜孔内的密度分布以及303K和压力从1MPa到10MPa变化时,氮气和氧气在狭缝膜孔内超额吸附等温线.实验结果表明,膜孔端口效应显著,膜厚和膜孔宽度对孔内吸附影响较大,而膜构型对膜面吸附影响显著.  相似文献   

8.
制备并解析了有机胺高氯酸盐共晶SY(乙二胺-三乙烯二胺高氯酸盐)和MT(甲胺-三乙烯二胺高氯酸盐),实验方法研究表明SY和MT中含有大量分子内和分子间氢键,形成多元环状结构,保证了晶体结构的稳定;采用分子动力学模拟的方法利用COMPASS力场分析了SY和MT在不同温度(213K-513K)下的动力学行为,研究结果表明SY和MT中N-H键L_(ave)和L_(max)变化量超过0. 07,判定其为SY和MT的引发键;在外电场作用下,C-N和N-H键键长均有所增加,而Cl-O键键长缩短,说明电场对不同键的影响不一致;在高温下(275K-515K)的分子动力学研究表明,SY和MT的能隙均变小,说明共晶的感度随温度的升高而变高。  相似文献   

9.
合成了一系列单体比例不同的4,4′-联苯二甲酸-酚酞/四溴酚酞共聚酯,并制成柔软透明的均质薄膜。测定了膜对氢气、氧气、氮气、二氧化碳、甲烷的气体透过性能,重点研究单体比例不同的共聚物中分子主链溴含量对气体透过性能的影响,发现随着四溴酚酞单体含量的增加,气体在聚合物中的溶解系数增大;扩散系数下降;气体透过系数在一定范围内存在较大值;分离系数的变化则不明显。结果表明在聚芳酯的芳环上引入适当含量的溴,可以提高聚合物的气体透过系数,而对分离系数的值影响不大。  相似文献   

10.
氧气在聚丙烯内吸附和扩散的分子模拟   总被引:3,自引:0,他引:3  
采用巨正则Monte Carlo和分子动力学模拟相结合的方法研究了氧气在不同聚合度的聚丙烯内的吸附和扩散. 模拟结果表明, 随聚丙烯聚合度的增加, 聚丙烯对氧气的吸附量逐渐增加, 而氧气在聚丙烯内的扩散系数减小; 当聚合度增大到一定程度时, 吸附量和扩散系数都趋于一稳定值. 随温度的升高, 氧气在聚丙烯内的吸附量减少, 而扩散系数增大. 本文还应用自由体积理论探讨了氧气在聚合物内扩散的机理, 发现氧气在聚丙烯内以空穴形式存在的自由体积之间扩散, 即氧气先在一个空穴内不停振动, 然后通过聚丙烯链段运动形成的通道跳跃到下一个空穴来完成扩散. 结果表明, 较高聚合度的聚合物材料在常温及低温下使用对于其在食品包装材料中的应用是有利的, 这为食品包装材料行业相关产品的应用开发提供了一定的指导和依据.  相似文献   

11.
Molecular dynamics (MD) simulations have been used to study the transport properties of oxygen and nitrogen in the para-substituted polystyrenes which possess one to four Si atoms in each substituent. The Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field was used to construct the polymers. Diffusion coefficients were obtained from molecular dynamics (NVT ensemble) with up to 3 ns simulation times. After molecular dynamic simulation, the trajectories of the small molecules in the polymer matrix were obtained. Then diffusion coefficients have been calculated from the Einstein relationship revealing a considerable agreement between the simulated and the experimental data. And solubility coefficients have been calculated by the Grand Canonical Monte Carlo (GCMC) method. The solubility of oxygen increased with increasing Si content in the polymer membrane. The para-substituted polystyrenes with a branched substituent at the alpha-position showed higher permeability than those of the nonbranched ones. The higher the glass transition temperature (T(g)) of the membrane, the larger the diffusion coefficients of oxygen and nitrogen obtained.  相似文献   

12.
Equilibrium NPT and NVT molecular dynamics simulations were performed on liquid benzene over an extended range of temperature (from 260 to 360 K) using the COMPASS force field. Densities and enthalpies of vaporization (from cohesive energy densities) were within 1% of experiment at all temperatures. tumbling and spinning rotational diffusion coefficients, D(perpendicular) and D(parallel), computed as a function of temperature, agreed qualitatively with the results of earlier reported experimental and computational investigations. Generally, it was found that D(parallel)/D(perpendicular) approximately 1.4-2.5 and the activation energy for tumbling was significantly greater than for spinning about the C6 axis [Ea(D(perpendicular)) = 8.1 kJ mol(-1) and Ea(D(parallel)) = 4.5 kJ mol(-1)]. Calculated translational diffusion coefficients were found to be in quantitative agreement with experimental values at all temperatures [deviations were less than the scatter between different reported measurements]. In addition, translational diffusion coefficients were computed in the molecule-fixed frame to yield values for Dxy (diffusion in the plane of the molecule) and Dz (diffusion perpendicular to the plane). It was found that the ratio Dxy/Dz approximately 2.0, and that the two coefficients have roughly equal activation energies. This represents the first atomistic molecular dynamics study of translational diffusion in the molecular frame.  相似文献   

13.
The heat of sublimation, density, melting point, and glass transition temperature are calculated for myo- and neo-inositol, using the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field and molecular dynamics techniques. Our results show that the calculated heats of sublimation and density are very close to the experimental values for both compounds. Furthermore, our simulated melting temperatures for myo- and neo-inositol also compare very well to the experimentally obtained data. The glass transition temperatures for myo- and neo-inositol have been calculated to be ca. 494 K and ca. 518 K, respectively, and the shape of the volume versus temperature plots produced are typical for a glass transition. As a result, it is our view that the COMPASS force field suitably describes these two compounds in molecular simulations and that molecular dynamics techniques, combined with this force field, can be used to simulate the melt and glass transitions for such molecules.  相似文献   

14.
Barrier properties of pristine polyethylene (PE) and polyethylene/montmorillonite-clay (PE/MMT) nanocomposite films with different MMT layers configurations were studied using molecular dynamics simulation within NVT ensemble. The force field parameters were optimized for bond lengths, bond angles and torsion angles of the MMT structure. A special simulation box was designed to simulate the diffusion of oxygen, nitrogen and methane, through pristine PE and PE/MMT nanocomposite films. The diffusion coefficients of these gases and the tortuosity values were calculated and analyzed. Results showed that the configuration of clay nanoparticles has strong effect on the barrier properties of the nanocomposite films. The parallel configuration for layered silicates was predicted to have a low diffusion coefficient and a high tortuosity parameter for gas diffusive molecules. The simulation could also indicate that the diffusion coefficient of oxygen is higher than those of nitrogen and methane gases in the examined systems which can be attributed to the smaller kinetic diameter of oxygen.  相似文献   

15.
The diffusion dynamics of small two-dimensional atomic clusters Cux (1·x·8) on Cu(111) surface were studied using the molecular dynamics simulations and a modified analytic embedded-atom method in the temperature range from 200 K to 800 K. The cluster size and temperature dependence of the diffusion coefficients and migration energies are presented. Our simulations show that the diffusion migration energy of the Cu7 cluster is the highest and the prefactor for the Cu7 cluster is almost three orders of magnitude larger than that for single atom diffusion. This conclusion is consistent with the experimental results for similar metals. In addition, the dependence of cluster diffusion on film growth is also discussed.  相似文献   

16.
Engelhard titanium silicate, ETS-4, is a promising new adsorbent for size-selective separation of mixtures of small gases, a leading industrially important example of which is methane-nitrogen separation. Single component equilibrium and kinetics of oxygen, nitrogen, and methane adsorption in Na-ETS-4 and cation-exchanged Sr-ETS-4, measured in an earlier study over a wide range of temperatures and pressures, are analyzed in this study. The adsorbent crystals were synthesized and pelletized under pressure (without any binder), thus giving rise to a bidispersed pore structure with controlling resistance in the micropores. Change in equilibrium and kinetics of adsorption of the aforementioned gases in Sr-ETS-4 due to pore shrinkage with progressively increasing dehydration temperature has also been investigated. Differential uptakes have been measured at various levels of adsorbate loading, which has allowed the elucidation of the nature of concentration dependence of micropore diffusivity. Both homogeneous and heterogeneous models are examined on the equilibrium data, while a bidispersed pore diffusion model is able to capture the differential uptakes very well. On the basis of chemical potential gradient as the driving force for diffusion, the impact of isotherm models on the concentration dependence of micropore diffusivity is also analyzed. It is shown that pore tailoring at the molecular scale by dehydration can improve the kinetic selectivity of nitrogen over methane in Sr-ETS-4 to a promising level. The models investigated are evaluated to identify essential details necessary to reliably simulate a methane-nitrogen separation process using the promising new Sr-ETS-4 adsorbent.  相似文献   

17.
In this work, we use molecular simulations to study the loading dependence of the self-and collective diffusion coefficients of methane in various zeolite structures. To arrive at a microscopic interpretation of the loading dependence, we interpret the diffusion behavior in terms of hopping rates over a free-energy barrier. These free-energy barriers are computed directly from a molecular simulation. We show that these free-energy profiles are a convenient starting point to explain a particular loading dependence of the diffusion coefficient. On the basis of these observations, we present a classification of zeolite structures for the diffusion of methane as a function of loading: three-dimensional cagelike structures, one-dimensional channels, and intersecting channels. Structures in each of these classes have their loading dependence of the free-energy profiles in common. An important conclusion of this work is that diffusion in nanoporous materials can never be described by one single effect so that we need to distinguish different loading regimes to describe the diffusion over the entire loading range.  相似文献   

18.
A new, condensed-phase optimised ab-initio force field, COMPASS, has been developed recently. In this paper, the validation of COMPASS for phosphazenes is presented. The functional forms of this force field are of the consistent force field (CFF) type. Charges and bonded terms were derived from HF/6–31G1 calculations, while the nonbonded parameters (L-J 9-6 vdW potential) were initially transferred from the polymer consistent force field, pcff, and optimised using MD simulations of condensed-phase properties. As a validation of COMPASS, molecular mechanics calculations and molecular dynamics simulations have been made on a number of isolated molecules, liquids, and crystals. The calculated molecular structure, vibration frequencies, conformational properties for isolated molecules, crystal cell parameters and density, liquid density, and heat of evaporation agreed favourably with most experimental data. The special conformational properties of the tetracyclophosphazenes, (NPCI2)4 and (NPF2)4, in the solid state are discussed based on molecular mechanics and CASTEP ab-initio calculations. The effect of nonbonded cutoff distance and different algorithms for pressure control in NPT simulation was also investigated. Finally, molecular dynamics using the COMPASS force field was used to predict properties of three isomers of high-molecular-weight amorphous poly(dibutoxyphosphazenes). In this case, excellent agreement was achieved between densities and glass transition temperatures obtained from dynamics and experimental data.  相似文献   

19.
A reversed-flow gas-chromatography (RF-GC) apparatus for the measurement of binary diffusion coefficients is described and utilized to measure the binary diffusion coefficients for several systems at temperatures from (300 to 723)K. Hydrocarbons are detected using flame ionization detection, and inert species can be detected by thermal conductivity. The present apparatus has been utilized to measure diffusion coefficients at substantially higher temperatures than previous RF-GC work. Characterization of the new apparatus was accomplished by comparing measured binary diffusion coefficients of dilute argon in helium to established reference values. Further diffusion coefficient measurements for dilute helium in argon and dilute nitrogen in helium (using thermal conductivity detection) and dilute methane in helium (using flame ionization detection) were performed and found to be in excellent agreement with literature values. The measurement of these well-established diffusion coefficients has shown that specific experimental conditions are required for accurate diffusion measurements using this technique, particularly at higher temperatures. Numerical simulations of the diffusion experiments are presented to demonstrate that artifacts of the analysis procedure must be specifically identified to ensure accuracy, particularly at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号