首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
CFRP阶梯加固可以有效减小CFRP端部胶层应力,防止胶层过早剥离而导致CFRP加固失效.文中通过理论推导建立CFRP阶梯加固钢板的端部胶层剪应力和正应力的理论模型,并采用有限元模型验证了理论模型,然后利用理论模型研究了加固参数对胶层应力的影响.研究结果表明:理论模型可以有效地计算端部胶层应力,且当阶梯端部长度超过“最小端部长度”时,理论模型可以准确计算端部胶层的最大应力值及其发生位置;利用理论模型便于分析各种参数对端部胶层应力的影响,其中胶层厚度、阶梯数量和CFRP厚度对端部胶层应力影响较大.  相似文献   

2.
在ANSYS有限元软件中建立三维有限元模型,对复合材料补片单面加固钢板进行数值模拟,使用内聚力单元模拟胶层脱粘和扩展过程,有限元模型计算结果与试验结果吻合较好,弹性极限载荷和失效载荷的相对误差分别为9.6%和4.2%。计算得到了模型在拉伸载荷作用下的载荷-位移曲线、胶层剪应力和剥离应力分布情况以及补片x轴向应力分布情况。结果表明,胶层端部最先达到极限强度后出现开裂,脱粘从补片两端开始逐渐向中心扩展,且扩展过程是非对称的;当补片发生部分脱粘后,补片应力集中在未脱粘处,承载长度逐渐减小、承载能力逐渐降低。  相似文献   

3.
钢板-混凝土组合加固钢筋混凝土梁的非线性有限元分析   总被引:2,自引:0,他引:2  
以10根采用钢板-混凝土组合加固技术加固的钢筋混凝土梁的试验为基础,建立了钢板-混凝土组合加固钢筋混凝土梁的非线性有限元模型.沿用了钢板-混凝土组合梁有限元分析中栓钉的荷载-滑移曲线及断裂模型,提出了新老混凝土界面的剪切-滑移模型,可以较好地模拟界面受力性能.采用有限元软件ABAQUS,模拟了一次加固、不同损伤加固及持载加固等加载情况下加固构件受力全过程和受弯破坏以及新老混凝土剥离破坏等破坏形态下加固试件的受力性能.在验证了有限元模型的准确性后,分析了钢板厚度、加固部分高度及长度等参数对加固构件承载能力及刚度的影响.最后提出了几点对钢板-混凝土组合加固RC梁的设计建议.  相似文献   

4.
为了揭示带钢箍接头服役混凝土电杆的破坏机理和承载性能,对3根长4.2m、3根长3.5m的带有钢箍接头的混凝土电杆以及3根长4.2m采用碳纤维布(CFRP)加固的钢箍接头电杆进行了抗弯承载力试验。通过试验观察了各试件的受力全过程和破坏形态,并获取了荷载-挠度曲线、刚度退化规律曲线、极限承载力等重要指标。研究结果表明:未加固试件的破坏形态大多为混凝土拉裂、接头钢箍不屈服,具有明显的脆性;加固接头试件的破坏过程迅速,主要表现为混凝土与CFRP的表面粘脱失效而破坏,过程迅速,具有脆性破坏特点,黏贴双层碳纤维布试件比采用单层碳纤维布试件的承载力提高了32.8%;对比加固和未加固接头的试件,经单层加固后电杆的承载力提高58.8%、初始弹性刚度提高达3倍,且延性性质也有所改善;但加固与未加固试件的耗能能力大致相当,其截面应变均符合平截面假定。  相似文献   

5.
板厚、温度和速度对单搭接胶接接头强度的影响   总被引:2,自引:0,他引:2  
为了探讨单搭接胶接接头结构的破坏机理,采用Hopkinson拉杆实验技术,研究了板厚、温度和速度(试样端部的最大速度)对单搭接胶接接头强度的影响。实验结果表明,板越厚、温度越低、速度越大,接头的强度越大。运用有限元方法分析了胶层的应力分布,通过引入剥离应力对试样强度的影响因子,研究发现板越厚、温度越低、速度越大,剥离应力对接头强度的影响越小。  相似文献   

6.
碳纤维布与钢板复合加固梁剥离破坏研究   总被引:1,自引:0,他引:1  
通过12根碳纤维布与钢板复合加固钢筋混凝土梁的抗弯性能研究,结果表明复合加固方式能有效地改善被加固构件的受力性能,但常由于复合加固层的剥离可能导致加固效果的降低。复合加固层与被加固构件之间的剥离是由于薄弱截面在剪应力及正应力的集中作用下而产生的,文中对复合加固层与混凝土之间的粘结剪应力及剥离正应力的计算公式分别进行推导,并进一步对碳纤维布与钢板复合加固的剥离机理进行分析,为工程应用提供依据。  相似文献   

7.
复合材料加筋结构可作为航空结构中的承力部件,其损伤与破坏对航空器的结构安全和服役性能至关重要.本文通过试验和数值仿真手段研究了短柱型复合材料结构压缩失效机理和极限承载力.通过短柱型单加筋板的轴向压缩破坏试验,分析梳理出界面脱粘和材料压溃两种典型失效形式;分别建立加筋板壳单元模型和实体单元模型,引入内聚力模型和Hashi...  相似文献   

8.
考虑钢板剥离影响的加固混凝土梁抗剪承载力研究   总被引:2,自引:0,他引:2  
通过对U形钢板的作用分析,提出钢板剥离对U形钢板加固混凝土梁的抗剪承载力有影响,对规范中的抗剪承载力计算式,应引入考虑钢板剥离影响的修正系数K,系数K是关于粘贴强度的函数。通过两组共14个粘贴U形钢板加固混凝土梁的有限元模型的数值仿真,并对分析结果进行数值拟合,推导了系数K的具体计算式,提出了考虑钢板剥离影响的加固混凝土梁的抗剪承载力计算式。最后通过4根梁实体模型的剪切破坏试验,验证了所提出计算式的合理性。  相似文献   

9.
预应力CFRP加固混凝土结构技术由于具有显著优势,越来越多地被应用在桥梁加固中,本文针对冻融循环作用下预应力CFRP板加固钢筋混凝土梁的耐久性能进行了实验研究。通过12片加固梁试件的实验研究了不同次数冻融循环作用下预应力CFRP板加固梁的破坏形态和承载性能,分析了混凝土强度等级、冻融循环次数、CFRP初始应力水平等因素对加固梁耐久性能的影响。实验结果表明:经历冻融循环后试件的开裂荷载和极限承载能力都有了不同程度的下降,冻融侵蚀对CFRP加固混凝土结构产生了明显的不利影响;随着冻融循环次数的增加,加固试件的破坏模式逐渐由混凝土保护层剥离转变为界面剥离的破坏形态;冻融循环作用对预应力加固试件的整体不利影响要大于非预应力试件;混凝土强度为C60的预应力CFRP加固试件在冻融侵蚀作用下的退化要较强度为C30的加固试件显著。  相似文献   

10.
钢筋混凝土结构内粘钢板加固技术可行性分析   总被引:6,自引:0,他引:6  
通过对钢筋混凝土结构内粘钢板的模型进行爆炸模拟试验,分析研究钢筋混凝土结构内粘钢板加固以增强局部抗爆炸能力的可行性,试验结果与理论分析表明,作者认为该加固技术是可行的。  相似文献   

11.
External bonding of FRP plates or sheets has emerged as a popular method for strengthening reinforced concrete structures. Debonding along the FPR–concrete interface can lead to premature failure of the structures. In this study, debonding induced by a flexural crack in a FRP-plated concrete beam is analyzed through a nonlinear fracture mechanics method. The concrete beam and FRP plate are modeled as linearly elastic simple beams connected together through a thin layer of FRP–concrete interface. A bi-linear cohesive (bond-slip) law, which has been verified by experiments, is used to model the FRP–concrete interface as a cohesive zone. Thus a cohesive zone model for intermediate crack-induced debonding is established with a unique feature of unifying the debonding initiation and growth into one model. Closed-form solutions of interfacial stress, FRP stress and ultimate load of the plated beam are obtained and then verified with the numerical solutions based on finite element analysis. Parametric studies are carried out to demonstrate the significant effect of FRP thickness on the interface debonding. The bond-slip shape is examined specifically. In spite of its profound effect on softening zone size, the bond-slip shape has been found to have little effect on the ultimate load of the plated beam. By making use of such a unique feature, a simplified explicit expression is obtained to determine the ultimate load of the plated concrete beam with a flexural crack conveniently. The cohesive zone model in this study also provides an efficient and effective way to analyze more general FRP–concrete interface debonding.  相似文献   

12.
A work-of-fracture method using three-point bend beam (3PBB) specimen, commonly employed to determine the fracture energy of concrete, is adapted to evaluate the mode-I cohesive fracture of fiber reinforced plastic (FRP) composite–concrete adhesively bonded interfaces. In this study, a bilinear damage cohesive zone model (CZM) is used to simulate cohesive fracture of FRP–concrete bonded interfaces. The interface cohesive process damage model is proposed to simulate the adhesive–concrete interface debonding; while a tensile plastic damage model is used to account for the cohesive cracking of concrete near the bond line. The influences of the important interface parameters, such as the interface cohesive strength, concrete tensile strength, critical interface energy, and concrete fracture energy, on the interface failure modes and load-carrying capacity are discussed in detail through a numerical finite element parametric study. The results of numerical simulations indicate that there is a transition of the failure modes controlling the interface fracture process. Three failure modes in the mode-I fracture of FRP–concrete interface bond are identified: (1) complete adhesive–concrete interface debonding (a weak bond), (2) complete concrete cohesive cracking near the bond line (a strong bond), and (3) a combined failure of interface debonding and concrete cohesive cracking. With the change of interface parameters, the transition of failure modes from interface debonding to concrete cohesive cracking is captured, and such a transition cannot be revealed by using a conventional fracture mechanics-based approach, in which only an energy criterion for fracture is employed. The proposed cohesive damage models for the interface and concrete combined with the numerical finite element simulation can be used to analyze the interface fracture process, predict the load-carrying capacity and ductility, and optimize the interface design, and they can further shed new light on the interface failure modes and transition mechanism which emulate the practical application.  相似文献   

13.
The elastic analysis of interfacial stresses in plated beams has been the subject of several investigations. These studies provided both first-order and higher-order solutions for the distributions of interfacial shear and normal stresses close to the plate end in the elastic range. The notable attention devoted to this topic was driven by the need to develop predictive models for plate end debonding mechanisms, as the early models of this type adopted debonding criteria based on interfacial stresses. Currently, approaches based on fracture mechanics are becoming increasingly established. Cohesive zone modeling bridges the gap between the stress- and energy-based approaches. While several cohesive zone analyses of bonded joints subjected to mode-II loading are available, limited studies have been conducted on cohesive zone modeling of interfacial stresses in plated beams. Moreover, the few available studies present complex formulations for which no closed-form solutions can be found. This paper presents an analytical cohesive zone model for the determination of interfacial stresses in plated beams. A first-order analysis is conducted, leading to closed-form solutions for the interfacial shear stresses. The mode-II cohesive law is taken as bilinear, as this simple shape is able to capture the essential properties of the interface. A closed-form expression for the debonding load is proposed, and the comparison between cohesive zone modeling and linear-elastic fracture mechanics predictions is discussed. Analytical predictions are also compared with results of a numerical finite element model where the interface is described with zero-thickness contact elements, using the node-to-segment strategy and incorporating decohesion and contact within a unified framework.  相似文献   

14.
External bonding of fibre reinforced polymer (FRP) composites has become a popular technique for strengthening concrete structures all over the world. The performance of the interface between FRP and concrete is one of the key factors affecting the behaviour of the strengthened structure. Existing laboratory research has shown that the majority of reinforced concrete (RC) beams strengthened with a bonded FRP soffit plate fail due to debonding of the plate from the concrete. Two types of debonding failures have been commonly observed: plate end debonding and intermediate crack induced debonding. In order to understand and develop methods to predict such debonding failures, the bond behaviour between concrete and FRP has been widely studied using simple shear tests on FRP plate/sheet-to-concrete bonded joints and a great deal of research is now available on the behaviour of these bonded joints. However, for intermediate crack induced debonding failures, the debonding behaviour can be significantly different from that observed in a simple shear test. Among other factors, the most significant difference may be that the FRP plate between two adjacent cracks is subject to tension at both cracks. This paper presents an analytical solution for the debonding process in an FRP-to-concrete bonded joint model where the FRP plate is subject to tension at both ends. A realistic bi-linear local bond-slip law is employed. Expressions for the interfacial shear stress distribution and the load–displacement response are derived for different loading stages. The debonding process is discussed in detail. Finally, results from the analytical solution are presented to illustrate how the bond length affects the behaviour of such bonded joints. While the emphasis of the paper is on FRP-to-concrete joints, the analytical solution is equally applicable to similar joints between thin plates of other materials (e.g. steel and aluminium) and concrete.  相似文献   

15.
The development of predictive models for plate end debonding failures in beams strengthened with thin soffit plates is a topic of great practical relevance. After the early stress-based formulations, fracture mechanics approaches have become increasingly established. More recently, the cohesive zone (CZ) model has been successfully adopted as a bridge between the stress- and fracture mechanics-based treatments. However, the few studies of this nature propose complex formulations which can only be implemented numerically. To date, the only available analytical solution based on CZ modeling for the prediction of interfacial stresses/debonding in plated beams is limited to the determination of interfacial shear stresses and thus neglects the mixed-mode effects generated by the presence of interfacial normal stresses at the plate end. This paper presents a new analytical formulation based on the CZ modeling approach for the prediction of plate end debonding in plated beams. A key enhancement with respect to the previous solution is the use of a coupled mixed-mode CZ model, which enables a full account of mixed-mode effects at the plate end. The model describes the evolution of the interface after the end of the elastic regime, and predicts the value of the load at incipient debonding. The achievement of a closed-form solution for this quite complex case entails the introduction of a crucial simplifying assumption, as well as the ad hoc modeling of an effective cohesive interfacial response. The paper presents the analytical theory and compares its predictions with numerical and experimental results.  相似文献   

16.
17.
碳纳米管/碳纤维增强复合材料(carbon nanotube/carbon fibre reinforced plastic,CNT/CFRP)是一种多尺度复合材料,比传统CFRP有更好的综合性能和更广阔的应用前景。对CNT/CFRP在低速冲击下的响应和破坏进行了数值模拟研究。首先,基于先前的研究通过引入基体增韧因子、残余强度因子并改进损伤耦合方程,建立了新的FRP动态渐进损伤模型;然后,利用新建立的本构模型并结合黏结层损伤模型,对4种碳纳米管含量的增韧碳纤维增强树脂基复合材料层合板在5个能量下的冲击实验进行了数值模拟;最后,将模拟结果与文献中的相关实验结果进行了比较,并讨论了冲击速度的影响。结果表明:新建立的FRP本构模型能够预测CNT/CFRP层合板在低速冲击载荷作用下的响应、破坏过程和分层形貌,模拟得到的载荷-位移曲线和破坏形貌与实验吻合较好;冲击速度会影响CNT/CFRP层合板拉伸和压缩破坏的比例,相同的冲击能量下,更大的冲击速度会造成更多的拉伸破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号