首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
李莎  韩梦  叶梦真  张骞  刘杰 《化学通报》2018,81(8):753-758
通过电导、流变学方法等研究了温度和表面活性剂浓度对双(2-乙基己基)磺基琥珀酸钠(AOT)、水和聚乙二醇-200(PEG-200)体系有序结构形成和转变的影响。结果发现,在室温下高浓度AOT溶液中出现凝胶结构。当AOT的浓度为400mmol/kg以上时,随着温度的升高,观察到体系从透明粘稠到稍浑浊再到透明低粘度的过程,结合AOT的双链结构并通过流变实验验证了网络结构的形成,推测该体系在微观上经历了从凝胶到囊泡再到胶束的转变过程。当AOT的浓度为200~400 mmol/kg时,随着温度的升高,出现了凝胶和胶束混合体系到胶束体系的转变过程。  相似文献   

2.
研究了3-氨丙基三乙氧基硅烷(APTES)和非离子表面活性剂十二烷基聚氧乙烯(C12EO4)水溶液的相行为、溶液自聚集作用和流变性,小角度X-射线散射(SAXS)、低温透射电子显微镜(cryo-TEM)和氘谱核磁共振(2H NMR)测定确定了溶液中聚集体结构,测定了聚集体混合物溶液的流变性质.结果表明:随着溶液混合物组分的变化,溶液聚集体结构发生了改变,在Lα相区内,恒定C12EO4浓度,随着APTES浓度增加聚集体结构由高曲率聚集体转变为低曲率的层状结构;而在恒定APTES浓度时,随着C12EO4增加,Lα相由低粘弹性的囊泡溶液转变为粘弹性极高的密堆积囊泡和平面层状结构共存的类凝胶相,溶液聚集体结构和结构转变是由于APTES水解产物插入至C12EO4胶束引起的.非离子表面活性剂和氨基硅烷混合物溶液相结构及结构转变的新结果对于完全理解该类混合物的实际应用,特别是作为模板合成硅材料的应用具有重要理论意义.  相似文献   

3.
用自制的3-氨基-4-羟基苯甲酸盐酸盐(ABBAH)在多聚磷酸(PPA)中合成聚(2,5-苯并噁唑)(ABPBO),利用衰减全反射红外光谱(ATR-IR)表征了其化学结构.分别用平板流变仪和毛细管流变仪对合成的ABPBO-PPA溶液进行动态和稳态流变测试.结果表明:ABPBO-PPA溶液的储能模量(G ')和损耗模量(G')均随频率升高而增大,且储能模量比损耗模量上升得更快;ABPBO-PPA溶液随温度升高趋于牛顿流体,随浓度升高非牛顿性更显著,ABPBO-PPA溶液表现出强烈的假塑性,并且不同温度下溶液的剪切黏度差值随剪切应力增大而减小.  相似文献   

4.
环境因素对正负表面活性剂体系相行为的影响   总被引:3,自引:0,他引:3  
在1:1正负离子表面活性剂混合体系(十二烷基硫酸钠/辛基三甲基溴化铵 SDS-C8NM3Br; 十二烷基硫酸钠/十二烷基三甲基溴化铵,SDS-C12NM3Br)中加入短链脂肪醇 (乙醇,正丙醇,正丁醇),正负离子表面活性剂沉淀溶解,出现表面活性剂双水相.上相有液晶存在,下相有囊泡自发形成.折光率数据和电镜结果表明:上相为表面活性剂富集相,下相表面活性剂浓度较低.混合体系中,出现表面活性剂双水相所需短链脂肪醇的体积百分数,随短链脂肪醇的链长增加而降低.温度升高,出现表面活性剂双水相所需短链脂肪醇的体积百分数降低.对SDS/C8NM3Br/H2O体系的研究结果表明:超声处理,可使混合体系中沉淀向囊泡转化,与短链脂肪醇的加入后的作用类似.  相似文献   

5.
研究了3-氨丙基三乙氧基硅烷(APTES)和非离子表面活性剂十二烷基聚氧乙烯(C12EO4)水溶液的相行为、溶液自聚集作用和流变性, 小角度X-射线散射(SAXS)、低温透射电子显微镜(cryo-TEM)和氘谱核磁共振(2H NMR)测定确定了溶液中聚集体结构, 测定了聚集体混合物溶液的流变性质. 结果表明: 随着溶液混合物组分的变化, 溶液聚集体结构发生了改变, 在Lα相区内, 恒定C12EO4浓度, 随着APTES浓度增加聚集体结构由高曲率聚集体转变为低曲率的层状结构; 而在恒定APTES浓度时, 随着C12EO4增加, Lα相由低粘弹性的囊泡溶液转变为粘弹性极高的密堆积囊泡和平面层状结构共存的类凝胶相, 溶液聚集体结构和结构转变是由于APTES水解产物插入至C12EO4胶束引起的. 非离子表面活性剂和氨基硅烷混合物溶液相结构及结构转变的新结果对于完全理解该类混合物的实际应用, 特别是作为模板合成硅材料的应用具有重要理论意义.  相似文献   

6.
本文用浊度滴定(UV-Vis)、透射电镜(TEM)和激光光散射(QELS)等方法对Al3+离子与卵磷脂(EYPC)囊泡之间的相互作用及其这种相互作用对溶液中磷脂微结构的影响进行了研究。结果表明,一定量的Al3+离子使EYPC多层囊泡转变为线团状聚集体;Al3+与牛磺胆酸钠(TC)的协同作用可以破坏EYPC的多层囊泡结构,促进相转变,形成混合胶束。  相似文献   

7.
在室温(25.0±0.1℃)下,对十二烷基硫酸钙(Ca(DS)2)/十四烷基二甲基氧化胺(C14DMAO)体系在两种表面活性剂不同比例r(r=nCa(DS)2/nC14DMAO)下的水溶液进行了表面活性考察.当Ca(DS)2和C14DMAO结合形成复配体系时,溶液CMC值及在CMC时的表面张力都远低于C14DMAO溶液,说明Ca(DS)2和C14DMAO的缔合结构在水-空气界面的结合比单一表面活性剂更为紧密.在所考察的比例中,当r=2.0:10.0时,溶液CMC值及在CMC时的表面张力达到最低值,该比例处于囊泡相区域.当C14DMAO浓度固定时,随着Ca(DS)2的加入,首先形成了球状胶束相(L1-相),然后球状生长得到蠕虫状胶束相(L1-相),接着出现L1/Lα两相区,之后随Ca(DS)2浓度的进一步增大,得到了具有双折射现象的囊泡相区(Lαv-相),而后是凝胶相(gel),最后当Ca(DS)2过量时,不溶的Ca(DS)2在溶液中形成了沉淀.对囊泡相样品进行负染色透射电镜表征,观察到了多分散的囊泡结构,囊泡直径分布约在50~200nm范围内.各相区受温度影响变化非常显著.当温度升高时,在相同C14DMAO浓...  相似文献   

8.
采用ATRP法制备了结构明确的两亲性嵌段共聚物聚[甲基丙烯酸(N,N-二甲氨基)乙酯-b-甲基丙烯酸(3-(三甲氧基硅基))丙酯],其在甲醇/水的混合溶液中自组装形成囊泡结构,并通过甲基丙烯酸[3-(三甲氧基硅基)]丙酯链段中三甲氧基硅基的水解交联,形成了稳定的共聚物囊泡结构。用光散射、SEM和TEM对囊泡的结构进行了表征。所得共聚物囊泡粒子具有温度和pH双重响应性,通过简单调控温度或pH值来实现囊泡粒子的溶解与沉淀收集,可用于蛋白质等的分离与纯化。  相似文献   

9.
本文通过测定不同浓度的溶液在不同温度和切变速率下的粘度,讨论了氰乙基纤维素/二甲基甲酰胺溶液的流变行为。溶液的流动曲线表明,该溶液是一种假塑性液体。在浓度较高时,存在屈服现象,屈服应力的大小与浓度和温度有关。溶液的浓度—粘度曲线表示出典型的液晶行为。粘度与浓度的关系和屈服应力与浓度的关系相似。溶液的临界浓度随温度的升高而增加。在单相区(各向同性相或液晶相),粘度随温度升高而降低,表观流动活化能大于零。但在两相区,粘度随温度的升高而增大,表观流动活化能小于零。该实验得到的临界浓度与通过光学的方法所得的临界浓度是一致的。  相似文献   

10.
研究了聚苯乙烯磺酸钠(Na PSS)在1-烯丙基-3-甲基咪唑氯盐(AmimCl)中的流变行为,并与其在AmimCl/H_2O混合溶剂中的流变行为进行了对比.聚合物浓度单位为每升溶剂中所含链段单元的摩尔数(mol/L).研究发现,Na PSS在AmimCl中表现出与其在无盐、有盐水溶液以及中性聚合物在离子液体(ILs)溶液中不同的流变行为.Na PSS在AmimCl含量不同的AmimCl/H_2O混合溶剂中的流变行为也不相同,随着AmimCl含量的增加,Na PSS在混合溶剂中的特性黏数[η]逐渐降低,表明分子线团逐渐塌缩,溶液的增比黏度随Na PSS浓度变化的标度所表现出的性质由聚电解质无盐水溶液特点逐渐变为中性聚合物溶液在θ状态下特点.当溶剂为纯AmimCl时,0.007~0.8 mol/L的浓度范围在0.29 mol/L处被分成2个浓度区.动态流变行为研究表明c0.29 mol/L浓度区为稀溶液区,溶液的增比黏度和弛豫时间随Na PSS浓度变化的标度关系为:ηsp~c1.4p和τ~c0p,与无盐聚电解质水溶液在缠结区的行为相似;c0.29 mol/L浓度区为溶液的亚浓非缠结区,溶液在该浓度区内增比黏度和弛豫时间随Na PSS浓度变化的标度关系为:ηsp~c3.5p和τ~c1.9p,接近于中性聚合物良溶液在亚浓缠结区的行为.这一特殊现象可能由混合体系中强烈的长程静电耦合作用引起.  相似文献   

11.
Unilamellar vesicles are observed to form in aqueous solutions of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), when 5-methyl salicylic acid (5mS) is added at slightly larger than equimolar concentrations. When these vesicles are heated above a critical temperature, they transform into long, flexible wormlike micelles. In this process, the solutions switch from low-viscosity, Newtonian fluids to viscoelastic, shear-thinning fluids having much larger zero-shear viscosities (e.g., 1000-fold higher). The onset temperature for this transition increases with the concentration of 5mS at a fixed CTAB content. Small-angle neutron scattering (SANS) measurements show that the phase transition from vesicles to micelles is a continuous one, with the vesicles and micelles coexisting over a narrow range of temperatures. The tunable vesicle-to-micelle transition and the concomitant viscosity increase upon heating may have utility in a range of areas, including microfluidics, controlled release, and tertiary oil recovery.  相似文献   

12.
Gel-sol transition of sodium type gellan solutions with and without salts is studied by dynamic viscoelastic measurements and differential scanning calorimetry (DSC). Mechanical spectra show that gellan aqueous solutions behave as an entangled polymer solution in the concentration range around 2 wt.-% at temperatures >15°C and as a weak gel below this temperature. Concentrated solutions (> 3 wt.-%) show a true gel behavior below 30°C. The two step transition is observed for 2∼3 wt.-% gellan aqueous solutions in thermal scanning rheological (TSR) measurements; the transition at a higher temperature is attributed to a coil-helix transition whilst the transition at a lower temperature is attributed to sol-gel transition. The transition observed in dilute solutions of gellan is attributed to the coil-helix transition whilst the sol-gel transition occurs simultaneously with coil-helix transition in more concentrated solutions (>3 wt.-%). The sol-gel transition temperature shifts to higher temperatures with increasing concentration of the added salts. Junction zones formed in the presence of divalent cations are far more heat resistant than those with monovalent cations judging from both DSC and TSR, however, the possibility of the formation of junction zones by covalent bonds or by ionic bonds is excluded.  相似文献   

13.
《Comptes Rendus Chimie》2016,19(8):951-954
Surfactants can self-assemble in dilute aqueous solutions into a variety of microstructures, including micelles, vesicles, and bilayers. Recently, there has been an increasing interest in unilamellar vesicles, which are composed of a closed bilayer that separates an inner aqueous compartment from the outer aqueous environment. This interest is motivated by their potential to be applied as vehicles for active agents in drug delivery via several routes of administration. Active drug molecules can be encapsulated in the bilayer membrane if they are lipophilic or in the core of the vesicle if they are hydrophilic. Furthermore vesicles formed by mixing of cationic and anionic surfactants (so called ‘catanionic’ systems) can be used as models for biological membranes as they have low critical micelle concentration (cmc) and are highly biocompatible. In this work the formation of amino acid based mixed surfactant vesicles and their stabilization and biocompatibility were studied systematically using several instrumental techniques.  相似文献   

14.
Surface activity and aggregation behavior of an amino acid-based zwitterionic amphiphile N-(2-hydroxydodecyl)-L-valine were studied in aqueous solutions (pH 13). The self-assembly formation was investigated by use of a number of techniques including surface tension, conductivity, viscosity, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The amphiphile exhibits two breaks in the surface tension vs concentration plot indicating stepwise aggregate formation and thus results in two values of critical aggregation concentration. The amphiphile was found to be very surface active compared to fatty acid soaps. The average hydrodynamic diameter and size distribution of the aggregates were obtained from DLS measurements. Conductivity measurements suggested formation of vesicles or closed tubules. TEM pictures revealed the existence of spherical vesicles, separated tubules, and tubules with multiple Y-type junctions in going from dilute to moderately concentrated solution. However, in concentrated solution, the junctions break to form separate tubular structures which upon further increase of concentration are converted to rod-like micelles. The mechanism of branched tubule formation is discussed in light of the experimental observations.  相似文献   

15.
Potentiometric pH measurements on cells with liquid junctions are known to be biased with respect to the notional pH in dilute acid solutions, but detailed evaluation of the problem is obstructed by experimental difficulties. In this work, pH measurements are simulated numerically on a kind of the Harned cell with a free-diffusion junction between the saturated solution of KCl and dilute solutions of HCl + KCl with ionic strength and acid concentration varying from 0.0001 to 0.1 in terms of molarity. The pH is standardized against the solution 0.0001 M HCl + 0.05 M KCl, and the simulations are based on known solution properties (transport numbers, activity coefficients and diffusion coefficients). The bias is found to range from ?0.012 to 0.056 in the composition range studied. The cell response is nearly linear in the notional pH in solutions with varying acid concentration, but no such relation is found in solutions with varying ionic strength at fixed acid concentration. It is shown that the Henderson equation underestimates the residual liquid-junction effect in very dilute solutions, largely due to failure to account for activity coefficients varying along the junction.  相似文献   

16.
Viscosities of aqueous solutions of five polyethylene oxide (PEO) samples with molar masses from 1.5 x 10(5) to 1.0 x 10(6) were carefully measured in a polytetrafluoroethylene (PTFE) capillary Ubbelohde viscometer in the concentration range from dilute down to extremely dilute concentration regions and compared with those of the same sample obtained from a glass capillary viscometer. At the same time, viscosities of aqueous solutions of three PEG samples in glass and paraffin-coated capillary viscosity were measured. The wall effects occurred in viscosity measurements for PEO and PEG aqueous solutions in different capillary viscometers were theoretically analyzed and discussed. It was found that different interfacial behaviors occurred in both hydrophobic and hydrophilic capillary viscometers respectively and the interfacial behaviors also exhibit molar mass dependence.  相似文献   

17.
Two N-acyl amino acid surfactants, sodium N-(11-acrylamidoundecanoyl)-glycinate (SAUG) and L-alaninate (SAUA), were synthesized and characterized in aqueous solution. A number of techniques, such as surface tension, fluorescence probe, light scattering, and transmission electron microscopy were employed for characterization of the amphiphiles in water. The surface and interfacial properties were measured. The amphiphiles have two critical aggregation concentrations. The results of surface tension and fluorescence probe studies suggested formation of bilayer self-assemblies in dilute aqueous solutions of the amphiphiles. The magnitudes of free energy change of aggregation have indicated that bilayer formation is more favorable in the case of SAUG. Steady-state fluorescence measurements of pyrene and 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to study the microenvironment of the molecular self-assemblies. Temperature-dependent fluorescence anisotropy change of DPH probe revealed phase transition temperature of the bilayer self-assemblies. The effects of pH on the structure of the self-assemblies of SAUG and SAUA have been studied. The role of intermolecular hydrogen bonding between amide groups upon aggregation toward microstructure formation in solution has been discussed. Circular dichroism spectra suggested the presence of chiral aggregates in an aqueous solution of SAUA. The transmission electron micrographs revealed the presence of closed spherical vesicles in aqueous solutions of the amphiphiles. Dynamic light scattering measurements were performed to obtain average size of the aggregates.  相似文献   

18.
Raman (and a few additional FT-IR) spectroscopic measurements of sodium and potassium carbonate and hydrogencarbonate in aqueous solution have been carried out over wide concentration ranges at room temperature and at elevated temperatures. The bands of the CO3(2-)(aq) and HCO3(-)(aq) species, which possess pseudo D3h and C1 symmetry respectively, have been assigned and discussed. Quantitative Raman measurements and thermodynamic calculations on KHCO3 solutions show that the salt does not dissolve congruently in aqueous solutions but forms small amounts of CO3(2-). Quantitative Raman spectroscopic measurements have also been carried out on K2CO3 solutions and the hydrolysis of the carbonate ion has been determined as a function of concentration at room temperature and as a function of temperature up to 219 degrees C. The pK2 value of carbonic acid at 23 degrees C has been established as 10.35 by Raman spectroscopy, a value that compares favourably with published thermodynamic values.  相似文献   

19.
Intermolecular interactions in mixtures of dilute solutions of poly acids with 1-(β-hydroxyethyl)-2-methyl-5-nitroimidazole were studied by viscometry, potentiometry, and IR spectroscopy. The rheological behavior of dilute aqueous solutions of polyacrylic and polymethacrylic acids and of metronidazole at a total concentration of the components of 0.1 wt % was examined. The composition dependences of the specific viscosity show positive deviations from the additivity with a maximum at approximately 50% relative content of the poly acid. In these mixtures, polyelectrolytic complexes stabilized by hydrogen bonds are formed. The strength of the associates increases with an increase in the temperature to 40°C. Hydrophobic groups in macromolecules of the poly acid play a significant role in stabilization of the complexes. In aqueous solutions metronidazole interacts with acrylic, methacrylic, and hydrochloric acids, and in the solid state it forms linear hydrogen-bonded associates.  相似文献   

20.
We study the photodecomposition of phospholipid bilayers in aqueous solutions of methylene blue. Observation of giant unilamellar vesicles under an optical microscope reveals a consistent pattern of membrane disruption as a function of methylene blue concentration and photon density for different substrates supporting the vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号