首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copolymer networks of poly(methacrylic acid) (PMAA) and poly(ethylene glycol) (PEG) exhibit large changes in their swelling behavior over a narrow pH range due to the reversible formation/dissociation of interpolymer complexes between the polymer chains. Intepolymer complexation occurs in copolymer gels of PMAA and PEG due to hydrogen bonding between protonated acid groups and the ether groups of the PEG. Because of their nature, these gels have been identified for use as delivery vehicles for macromolecular drugs. In this work, solid‐state, nuclear magnetic resonance nuclear Overhauser enhancement (NOE) experiments were performed to detect the molecular level complexation between PMAA and deuterated PEG in copolymer blends and crosslinked networks. For gels swollen in acidic media at room temperature or at 37 °C, strong enhancements were detected in the 13C resonance of the PEG carbons. The NOE was generated due to energy transfer between the rapidly rotating methyl group protons and the deuterated PEG carbons. The presence of the NOE was indicative of close packing of the polymer chains and was evidence of the presence of the intermacromolecular complexes. In basic solutions, no NOE was detected in the PEG, as the complexes were dissociated and the chains were separated in space. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2823–2831, 2000  相似文献   

2.
A competitive complex forming reaction between a number of monosubstituted poly(ethylene glycol)s (PEG*) containing a hydrophobic group of differing chemical nature and nonsubstituted PEG of various molecular weights with poly(methacrylic acid) (PMAA) was studied. A UV spectroscopy method was used. During the transfer of the hydrophobic chromophoric group from the aqueous medium into the hydrophobic domains of the polycomplex (PMAA.PEG*), a bathochromic effect was observed. The introduction of a hydrophobic group into the PEG chain leads to stabilization of the polycomplex (PMAA.PEG) that is formally the same as growing the chain length of PEG. The polymerization degree of PEG having the same competitive power as PEG* can be used as the peculiar scale of the complex forming ability of PEG* in the complexation with PMAA. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The diffusion behavior of poly(ethylene glycol) (PEG) in N-isopropylacrylamide (NIPAAm) hydrogels was investigated using confocal Raman spectroscopy with regard to temperature (25°C, 30°C and 35°C), PEG concentration (10 and 40?wt.%), PEG molecular weight (2,000 and 12,000?g/mol) and addition of the compatible solute ectoine (0.1 and 2?wt.%). Swelling and shrinking of the gels was observed by means of confocal Raman spectroscopy. The swelling behavior of NIPAAm gels in aqueous solutions of PEG and ectoine was found to resemble the swelling behavior in pure water with regard to temperature, i.e., the gel shrinks with increasing temperature. However, the presence and concentration of PEG and ectoine influence the swelling behavior by lowering the volume phase-transition temperature of the gel and facilitating shrinking. In some cases, a re-swelling of the gel was observed after the initial shrinking at the onset of PEG diffusion, which can be explained by PEG changing the chemical potential in the gel phase as it diffuses into the sample allowing the water to re-enter. The expulsion of water from the gel during shrinking and the so-caused increase of PNIPAAm and PEG concentrations in some cases led to the PEG diffusion seemingly being faster in more shrunken gels despite of their higher diffusion resistance.  相似文献   

4.
New thermoresponsive crosslinked hydrogels with controlled multiblock copolymer structure were prepared from equimolar amounts of α,ω-diamino poly(propylene glycol)s with molecular weights (MW) 230, 400, and 2,000 g mol?1 and diepoxy-terminated poly(ethylene glycol)s of approximate MW 1,000; 2,000; and 4,000 g mol?1. Their thermoresponsive character was investigated on the 10–70 °C interval, while the swelling behavior was tested at 21, 37, and 50 °C. All hydrogels displayed temperature sensitivity, but a volume phase transition was noticed only in the case of poly(propylene glycol) (PPG)2000-containing hydrogels. The volume phase transition temperature (T VPT ) depended on the MW of the hydrophilic poly(ethylene glycol) (PEG) chains attached to the PPG2000 block, as well as on the added salts. Longer PEG blocks determined a shift of T VPT towards higher values, while the influence of the salt added was in agreement with the Hofmeister series, except for NaH2PO4 which determined the destruction of the hydrogel network. The equilibrium swelling degree depended on the MW of both PEG and PPG blocks, as well as on temperature. The analysis of the swelling process indicated a modification of the gel characteristics with temperature and second-order kinetics for the water penetration into the hydrogel.  相似文献   

5.
Miscibility and dehydration of poly(2-hydroxyethyl methacrylate) and poly(methacrylic acid) (PHEMA/PMAA) blends were investigated by temperature modulated DSC (TMDSC), TG and solid-state 13C NMR methods. TMDSC spectra and 1H spin-relaxation times showed that the blends are homogeneous on a scale of 5-10 nm for all compositions. From TG and 13C NMR, we elucidated that the mass loss of the blends at 300°C is ascribed to the dehydration between the hydroxyl group of PHEMA and the carboxyl group of PMAA. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Covalently bound protoporphyrin IX was used as a fluorophore to investigate the interpolymer complex formation between the poly(carboxylic acid)s, PMAA/PAA and poly(N-vinyl pyrrolidone), PVP, poly(ethylene oxide), PEO or poly(ethylene glycol), PEG. Absorption and emission spectral properties of protoporphyrin IX bound to PAA, PMAA and PVP have been studied. Protoporphyrin IX in poly(MAA-co-PPIX) was found to be present in the dimer or higher aggregated form at low pH due to the environmental restriction imposed by the polymer whereas in the case of poly(AA-co-PPIX) and poly(VP-co-PPIX), PPIX exists in monomeric form. The fluorescence intensity and lifetime of PPIX bound to poly(carboxylic acid)s increase on complexation through hydrogen bonding with PVP, PEO and PEG due to the displacement of water molecules in the vicinity of the PPIX. Poly(MAA-co-PPIX) shows longer fluorescence lifetime due to the more compact interpolymer complexation as compared to poly(AA-co-PPIX) due to the enhanced hydrophobicity of PMAA. Poly(VP-co-PPIX) shows a decrease in the fluorescence lifetime on complexation with PMAA or PAA due to the hydrophilic and microgel like environment of the fluorophore bound to PVP. The contrasting behaviour of the same polymer adduct with respect to the site of the fluorophore is interpreted to be due to the solvent structure which determines the environment of the fluorophore.  相似文献   

7.
Different viscosity grade sodium alginate (NaAlg) membranes and modified sodium alginate membranes prepared by solution casting method and crosslinked with glutaraldehyde in methanol:water (75:25) mixture were used in pervaporation (PV) separation of water+acetic acid (HAc) and water+isopropanol mixtures at 30 °C for feed mixtures containing 10–50 mass% of water. Equilibrium swelling experiments were performed at 30 °C in order to study the stability of membrane in the fluid environment. Membranes prepared from low viscosity grade sodium alginate showed the highest separation selectivity of 15.7 for 10 mass% of water in the feed mixture, whereas membranes prepared with high viscosity grade sodium alginate exhibited a selectivity of 14.4 with a slightly higher flux than that observed for the low viscosity grade sodium alginate membrane. In an effort to increase the PV performance, low viscosity grade sodium alginate was modified by adding 10 mass% of polyethylene glycol (PEG) with varying amounts of poly(vinyl alcohol) (PVA) from 5 to 20 mass%. The modified membranes containing 10 mass% PEG and 5 mass% PVA showed an increase in selectivity up to 40.3 with almost no change in flux. By increasing the amount of PVA from 10 to 20 mass% and keeping 10 mass% of PEG, separation selectivity decreased systematically, but flux increased with increasing PVA content. The modified sodium alginate membrane with 5% PVA was further studied for the PV separation of water+isopropanol mixture for which highest selectivity of 3591 was observed. Temperature effect on pervaporation separation was studied for all the membranes; with increasing temperature, flux increased while selectivity decreased. Calculated Arrhenius parameters for permeation and diffusion processes varied depending upon the nature of the membrane.  相似文献   

8.
Biodegradable multiblock copolymers were synthesized by a polycondensation of poly(ɛ-caprolactone) (PCL) diols of molecular weight (MW)=3,000 and poly(ethylene glycol)s (PEG) of MW=3,000 with 4,4′-(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender in diphenyl ether at 180 °C for 2 h, and were characterized by GPC, 1H-NMR, FTIR, UV, DSC, and WAXS. These photosensitive copolymers were irradiated by a 400-W high-pressure mercury lamp (λ>280 nm) from 5–60 min to form a network structure. The gel contents increased with irradiation time, and attained ca. 90% after 60 min for all copolymers. The degree of swelling in a distilled water at ambient temperature, and the rate of degradation in a phosphate buffer solution (pH 7.2) at 37 °C increased with increasing PEG components. The shape-memory tests were performed by a cyclic thermomechanical experiments for the photocured CAC/PCL/PEG (75/25) films. The film with a gel content of 57% showed the best shape-memory property with strain fixity rate of 100% and strain recovery rate of 88%.  相似文献   

9.
Poly[N-isopropylacrylamide-co-(maleic acid)], poly(NIPA-co-MA), was synthesized by radical polymerization in an aqueous solution composing of 35% mol N-isopropylacrylamide/maleic acid. Poly(NIPA-co-MA) hydrogel nanofibrous membrane was fabricated by electrospinning using ethanol as solvent. The electrospun nanofibers were cross-linked using diethylene glycol as cross-linker, followed by a heat-induced esterification reaction at 145°C. The average diameter of electrospun fibers was 117 ± 33 nm. The hydrogel membrane exhibited a temperature sensitive property. Its minimum and maximum water absorption ratios were 4 ± 0 g g?1 at 50°C and 17 ± 4 g g?1 at 34°C, respectively. An equilibrium swelling state of the electrospun membrane was reached within 5 min.  相似文献   

10.
To develop a smart free-standing surface enhanced Raman scattering(SERS) substrate,silver nanoparticles(AgNPs) embedded temperature-sensitive nanofibrous membrane was fabricated by electrospinning their aqueous solution containing the copolymer poly(N-isopropylacrylamide-co-Nhydroxymethylacrylamide),followed by heat treatment to form crosslinking structure within its constituent nanofibers.To avoid negative effect of the additive like stabilizer and the reactant like reductant on their SERS efficiency,the AgNPs were in-situ synthesized through reducing Ag~+ions dissolved in the polymer solution by ultraviolet irradiation.The prepared hybrid nanofibrous membrane with high stability in aqueous medium can reach its swelling or deswelling equilibrium state within 15 seconds with the medium temperature changing between 25℃and 50℃alternately.When it was used as a free-standing SERS substrate,10~(-12) mol/L of 4-nitrothiophenol in aqueous solution can be detected at room temperature,and elevating detection temperature can further lower its low detection limit.Since its generated SERS signal has desirable reproducibility,it can be used as SERS substrate for quantitative analysis.Moreover,the hybrid membrane as SERS substrate is capable of real-time monitoring the reduction of 4-nitrothiophenol into 4-aminothiophenol catalyzed by its embedded AgNPs,and the detected intermediate indicates that the reaction proceeds via a condensation route.  相似文献   

11.
Biodegradable star-shaped copolymers comprised of four-arm poly(ethylene glycol) (4-arm PEG) and poly(β-amino ester) (PAE) were synthesized by conjugating PAE to 4-arm PEG. The synthesized copolymers were characterized by 1H and 13C NMR and gel permeation chromatography. The PAE showed pH/temperature-sensitive properties in an aqueous solution. The copolymer solutions (30 wt.%) showed a gel-to-sol phase transition as a function of temperature in the pH range 7.2–7.8. The gel window covers the physiological conditions (37 °C and pH 7.4) and can be controlled by varying the PAE block length, copolymer solution concentration and PEG molecular weight. After a subcutaneous injection of the copolymer solution into a SD rat, a gel formed rapidly in situ which remained for more than 2 weeks in the body. This copolymer is expected to be a potential candidate for biomedical applications.  相似文献   

12.
A new monomer 1,5‐bis(4‐fluorobenzoyl)‐2,6‐dimethoxynaphthalene (DMNF) was prepared and further polymerized to form naphthalene‐based poly(arylene ether ketone) copolymers containing methoxy groups (MNPAEKs). The side‐chain‐type sulfonated naphthalene‐based poly(arylene ether ketone) copolymers (SNPAEKs) were obtained by demethylation and sulfobutylation. Flexible and tough membranes with reasonably high mechanical strength were prepared. The SNPAEKs membrane showed anisotropic membrane swelling with larger swelling in thickness than in plane. Transmission electron microscopy (TEM) analysis revealed clear nanophase separated structure of SNPAEKs membranes, which composed of hydrophilic side chain and hydrophobic main‐chain domains. Proton conductivities of copolymers increased gradually with increase in temperature. The highest conductivity of 0.179 S/cm was obtained for SNPAEK‐80 (IEC = 1.82 mequiv/g) at 80 °C, which is higher than that of Nafion117 (0.146 S/cm). The SNPAEKs membranes exhibit the methanol permeability in the range of 3.42 × 10?8?4.49 × 10?7 cm2/s, which are much lower than that of Nafion117. They could be the promising materials as alternative to Nafion membrane for direct methanol fuel cells applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47:5772–5783, 2009  相似文献   

13.
The radical polymerization of methacrylic acid (MAA) at 0, 20, 40, and 70 °C was achieved in porous isotactic (it‐) poly(methyl methacrylate) (PMMA) films on quartz crystal microbalance (QCM) substrates, which were prepared by layer‐by‐layer assembled stereocomplex films of it‐PMMA and syndiotactic (st‐) poly(methacrylic acid) (PMAA), followed by the subsequent extraction of st‐PMAA. The MAA polymerization yields increased from 35 to 75%, as the polymerization temperature increased from 0 to 70 °C. Furthermore, infrared spectroscopy revealed that a higher polymerization temperature is necessary to form it‐PMMA/st‐PMAA stereocomplexes via stereoregular polymerization manner that resemble native it‐PMMA/st‐PMAA stereocomplexes. X‐ray diffraction pattern of porous it‐PMMA were also investigated for reaction fields. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3032–3036  相似文献   

14.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   

15.
Complex formation between polymethacrylic (PMAA) and polyacrylic acids, and star-shaped poly(ethylene glycol) prepared by ethoxylation of pyrogallol (Pyr–PEG) has been studied viscometrically and by potentiometric titration in water solution. The competitive ability of Pyr–PEG and of the derivatives of the ethoxylation of phenol and hydroquinone in complex formation with PMAA has been compared by UV spectroscopy. Pyr–PEG turns out to be the weakest competitor because of its chemical structure. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
As a novel class of proton exchange membrane materials for use in fuel cells, sulfonated poly(phthalazinone ether ketone)s (SPPEKs) were prepared by the modification of poly(phthalazinone ether ketone). Sulfonation reactions were conducted at room temperature with mixtures of 95–98% concentrated sulfuric acid and 27–33% fuming sulfuric acid with different acid ratios, and SPPEK was obtained with a degree of sulfonation (DS) in the desired range of 0.6–1.2. The presence of sulfonic acid groups in SPPEK was confirmed by Fourier transform infrared analysis, and the DS and structures were characterized by NMR. The introduction of sulfonic groups into the polymer chains increased the glass‐transition temperature above the decomposition temperature and also led to an overall decrease in the decomposition temperature. Membrane films were cast from SPPEK solutions in N,N‐dimethylacetamide. Water uptakes and swelling ratios of SPPEK membrane films increased with DS, and SPPEKs with DS > 1.23 were water‐soluble at 80 °C. Proton conductivity increased with DS and temperature up to 95 °C, reaching 10?2S/cm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 497–507, 2003  相似文献   

17.
The functionality of porous isotactic (it) poly(methyl methacrylate) (PMMA) thin films, which were previously developed by the selective extraction of syndiotactic (st) poly(methacrylic acid) (PMAA) from the it‐PMMA/st‐PMAA stereocomplex thin film on a substrate using the layer‐by‐layer assembly method was investigated after thermal treatment (70, 80, and 90 °C) in water for 4 h. Quartz crystal microbalance analysis and infrared spectra measurements revealed that the st‐PMAA incorporation ability of the porous it‐PMMA thin film decreased in order at 80 and 90 °C, while there was no decrease observed at 70 °C. X‐ray diffraction analysis also supported the thermal stability of the porosity at 70 °C, whereas two it‐PMMA crystalline peaks (2θ = 9° and 14°) were generated during heating at 90 °C. The loss of the functionality of the it‐PMMA thin film was thus shown to be due to crystallization, which was caused by the increase in polymer‐chain mobility during the heating process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3265–3270, 2010  相似文献   

18.
Interpolymer complex formation between poly(L -proline) (PLP) with helical structure and poly(methacrylic acid) (PMAA) with random-coil structure through hydrogen bonding in aqueous medium has been studied by several experimental techniques, e.g., viscometry, turbidimetry, potentiometry, conductometry, scanning electron microscopy, and x-ray diffraction methods. The decreases in reduced viscosity of the solution on addition of an increasing quantity of PLP to a constant amount of PMAA reveals the formation of a complex between PLP and PMAA. The minimum in reduced viscosity at a unit-mole ratio [PLP]/[PMAA] = 1.0 suggests a 1 : 1 complex formation. A distinct change in the curves for turbidity, pH, and conductance versus [PLP]/[PMAA] supports this conclusion. A scanning electron micrograph for the 1 : 1 PLP–PMAA complexes shows that the PLP/PMAA complex has the shape of entangled long fibers. An x-ray diffraction pattern for the PLP/PMAA complexes gives no diffraction patterns which appear in pure PLP, indicating the destruction of the helical structure of PLP due to the interpolymer complexation. Mixtures of PMAA with poly(γ-hydroxy-L -proline) (PHLP) which has a similar conformation as PLP, but involves intra- or intermolecular hydrogen bonds, has also been investigated by vicometry measurements. The reduced viscosity of a solution of the mixed polymers increases with increasing [PHLP], indicating no complex formation. All the results reveal that the magnitude and the nature of the forces acting in the polymers play an important role in interpolymer complexation.  相似文献   

19.
New ternary semi interpenetrating polymer networks (semi‐IPNs) systems containing acrylamide (AAm), 1‐vinylimidazole (VI) and poly (ethylene glycol) (PEG) have been prepared. AAm/VI hydrogels and semi‐IPN's, poly (AAm/VI/PEG) with 0.25, 0.50, 0.75 and 1.00 g of PEG (per 1.00 g AAm) were prepared by free radical solution polymerization in aqueous solution of AAm with VI as comonomer and a multifunctional crosslinker such as 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of VI and PEG content in hydrogels were examined. AAm/VI and AAm/VI/PEG hydrogels showed large extents of swelling in aqueous media, the swelling being highly dependent on the chemical composition of the hydrogels. Percentage swelling ratio of AAm/VI hydrogels and AAm/VI/PEG hydrogels was shown as 650–4167%. The values of equilibrium water content (EWC) of the hydrogels are between 0.8990 and 0.9750. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号