首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
AB2型储氢合金因其具有理论储氢容量高、循环寿命长以及性价比高等优点引起研究者的广泛研究兴趣。但是,AB2型储氢合金还存在活化困难、易毒化以及平台高等缺点阻碍了其实际应用。近年,针对AB2型合金的缺点,研究者们进行了大量的改性研究,并取得了很大进展。本文综述了AB2型储氢合金近30年以来的研究进展情况,重点介绍了改善其储氢性能的方法,提出了AB2型合金今后的重点研究方向。  相似文献   

2.
含锡AB5型非化学计量贮氢合金Ⅰ.合金的结构   总被引:6,自引:1,他引:5  
采用X射线衍射法研究了LaNi5.15,La(NiSn)5.14,La(NiSnCo)5.12,La(NiSnMn)5.12,LA(NiSnCoMnAl)5.105种AB5型非化学计量贮氢合金的结构。发现主物相中并未产生第二物相,AB5型贮氢合金中B原子数发生正偏移时,晶胺体积减小,当B侧含有取代元素时,这种变化更加明显。对于非化学计量贮氢合金而言,少量Sn取代Ni后,晶胞体积大大提高。Mn,Co  相似文献   

3.
采用X射线衍射法研究了LaNi5 .1 5 ,La(NiSn) 5 .1 4 ,La(NiSnCo) 5 .1 2 ,La(NiSnMn) 5 .1 2 ,La(NiSnCoMnAl) 5 .1 0 5种AB5 型非化学计量贮氢合金的结构。发现主物相中并未产生第二物相 ,AB5 型贮氢合金中B原子数发生正偏移时 ,晶胞体积减小 ,当B侧含有取代元素时 ,这种变化更加明显。对于非化学计量贮氢合金而言 ,少量Sn取代Ni后 ,晶胞体积大大提高。Mn ,Co和Al的加入也会影响晶胞常数。Sn ,Co ,Mn ,Al均会降低贮氢合金放氢平台压力。  相似文献   

4.
以感应熔炼和不同的热处理工艺制备了La4MgNi19合金, 用X射线衍射(XRD)和电化学测试系统研究了该合金的相结构和电化学性能. 结构分析表明: 当热处理工艺为900 °C+水淬时, 合金主要由CaCu5结构的LaNi5相和少量未知相组成; 当热处理工艺为900 °C退火时, 合金主要由Pr5Co19、Ce5Co9结构的(La, Mg)5Ni19相及少量CaCu5结构的LaNi5相组成. 淬火和退火后合金的电化学循环稳定性(S100)分别为49.7%及76.0%, 合金电极的电化学性能和相结构密切相关. 退火热处理有利于生成Pr5Co19、Ce5Co9型相. 在La-Mg-Ni 系储氢合金中, La4MgNi19合金电化学循环稳定性不及La3MgNi14合金.  相似文献   

5.
含锡AB5型非化学计量贮氢合金Ⅱ.电化学性能   总被引:3,自引:3,他引:0  
研究了几种AB5非化学计量贮氢合金的电化学性能,及在低电流密度与电高流密度放电下了代元素对放电比容量、活化性能及循环寿命的影响。Sn,Co,Mn的加入有利于提高合金的电化学氢容量,La(NiSn)5.14,La(NiSnCo)5.12和(NiSnMn)5.12具有相同的电化学贮氢容量与活性特性。尽管La(NiSn)5.14大电流电性能优于La(NiSnCo)5.12和La(NiSnMn)5.12,  相似文献   

6.
为提高La-Mg-Ni基储氢合金La0.73Ce0.18Mg0.09Ni3.20Al0.21Mn0.10Co0.60的电化学性能,由5-溴水杨酸和苯胺合成了一种席夫碱作为表面改性剂,对储氢合金进行表面处理。 从紫外与红外图谱可知,合成了目标席夫碱。 添加1%席夫碱后,合金的相结构没有改变。 与未添加席夫碱的合金电极相比,电极的最大放电容量略有下降,但50次充放电循环后合金电极的容量保持率有较大幅度提高,添加5%席夫碱的电极容量保持率从63%提高到75%,高倍率放电性能也有增加。 经表面处理后,合金电极的交换电流密度I0与极限电流密度IL均有大幅度提高,动电位极化曲线也表明合金电极的抗腐蚀能力变强。 以上结果均表明,添加少量席夫碱有助于改善储氢合金电极的电化学性能。  相似文献   

7.
高容量的Ti-V基BCC相储氢合金   总被引:4,自引:0,他引:4  
储氢合金是有希望成为燃料电池供氢源的方式之一,在各类储氢合金中,以LaNi5为代表的AB5和以TiMn2为代表的AB5发展已较成熟,但由于其储氢量小于2%(质量百分比)而制约了其应用,Mg基合金具有较大的储氢量(3%左右),但由于其吸放氢条件(温度在473K以上)苛刻难以满足燃料  相似文献   

8.
纳米氧化铜掺杂对储氢合金电极性能的影响   总被引:5,自引:0,他引:5  
采用纳米氧化铜作为添加剂制备储氢合金电极, 考察了氧化铜对储氢合金电池储备容量的调节作用, 分析了掺杂后电极及电池质量的变化, 研究了掺杂合金电极的电化学性能, 并用SEM、EIS、CV等方法分析了反应的电化学机理. CV、SEM结果表明, 氧化铜在首次充电过程中被还原成低价态沉积在合金颗粒表面, 由于氧化铜比容量远大于合金, 可以通过掺杂氧化铜调节合金的储备容量. 电化学测试结果表明, 掺杂合金电极具有更好的高倍率充放电能力和循环性能. EIS分析结果表明, 掺杂合金电极导电性增强, 电化学活性提高.  相似文献   

9.
电沉积工艺对Mg-Ni储氢合金的电化学性能的影响   总被引:3,自引:0,他引:3  
用电沉积的方法制备了镁 镍储氢合金,探讨了电沉积条件对合金的电化学性能的影响.XRD显示沉积层中含有非晶态Mg Ni相和微晶态Mg相.AAS分析表明沉积合金中Mg的摩尔分数达 8. 57%.合金的放电容量最高为 75. 547mA·h·g-1.  相似文献   

10.
稀土对LaNi3.5Co0.8Mn0.4Al0.3合金电化学及储氢特性的影响   总被引:1,自引:0,他引:1  
研究了以Ce,Nd和Pr部分替代LaNi3.5Co0.8Mn0.4Al0.3中的La后对合金电化学及储氢特性的影响。稀土含量的变化明显改变合金的电化学及储氢特性。随着Nd含量的增加,合金的放电容量降低。  相似文献   

11.
添加元素对AB2型Laves相合金电化学性能的影响   总被引:3,自引:0,他引:3  
比较系统地研究了AB2型Laves相合金Zr0.9Ti0.1Ni0.1Mn0.7V0.3M0.1(M=None,Ni.Mn.V.Co.Cr.Al.Fe,Mo.Si.C.Zn,Cu和B)的相结构和电化学性能以及高温和低温放电性能等.结果表明.14种合金均具有六方C14型Laves相的主相晶体结构.同时,含有少量立方Cl5型Laves相和一些由Zr9Ni11及ZrNi组成的非Laves相;添加V和Mn可提高AB2合金的放电容量;添加B和Mn则显著提高了AB2合金的高倍率放电性能和低温放电容量;添加Al,C.Si和Co对合金电极的循环稳定性改善明显;而Mn.Ni.V.Fe.Cu.Mo和B等却不同程度地降低了循环稳定性;添加Si.Mo,V,Cr和Al可明显改善合金电极的自放电性能;添加Si.Cr.V可显著改善AB2合金电极的高温放电性能.讨论了各种添加元素影响合金性能的可能原因.  相似文献   

12.
氢气在贮氢合金电极上析出反应机理的研究   总被引:4,自引:0,他引:4  
卢世刚  刘庆国 《电化学》1998,4(3):265-272
贮氢合金电极上氢气的析出反应分为水分子的放电和吸附氢原子复合脱附两个步骤,即反应按Volmer-Tafel机理进行,反应的超电势η可以区分为η1和η2两个组成部分,反映了Volmer和Tafel反应的极化特征。析氢反应的速度由二者混合控制,在高超电势区,主要则由Volmer反应所控制。  相似文献   

13.
粉末贮氢合金作为一种功能材料在许多领域已有广泛应用。而薄膜贮氢合金是80年代国外新开发的功能材料。目前国外制备薄膜贮氢合金的方法主要有热蒸发法(包括闪蒸)和磁控溅射法。最近我们采用一种新颖的制备方法——离子束溅射法研制非晶态、晶态Ti-Ni薄膜合金。  相似文献   

14.
锆系Laves相储氢合金电极的性能研究   总被引:11,自引:0,他引:11  
高学平  杨化滨 《电化学》1995,1(3):298-304
Zr(V0.2Mn0.2Mo0.06Ni0.54)2.4合金经HF溶液处理后,合金表面由富Zr和富Mn层转变成富Ni层,从而使电极初期活化周期明显缩短,电极表面氢吸附性能改善。表面反应电阻减小。本文探讨了上述电极表面反应机理,即表面Ni的催化、氢吸附和氢转移机理,对阻抗谱进行拟合,给出了相应的电极反应等效电路。  相似文献   

15.
MgNi2添加对AB5型储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
制得了含Mg的AB5型稀土合金, 研究了合金添加Mg后合金电化学性能的变化. 采用ICP, XRD对合金组成和结构进行分析, 并通过EIS、CV、SEM和阳极极化曲线研究了电化学反应机理.  相似文献   

16.
研究了富镧混合稀土贮氢合金MlNi5 及加Sn 后对合金的结构、活化性能、吸氢容量和平衡氢压等性能的影响。通过X 射线衍射分析进行物相分析, 测试了298 ,313,333 K 温度下合金的吸、放氢PCT曲线。结果表明,MlNi5 - xSnx 合金(x=0 ~0.4) 为六方晶体结构的单相组织。以Sn 部分取代Ni 改善了MlNi5 的活化特性, 并使平台压力降低, 吸、放氢滞后减小。随着Sn 含量增加, 晶胞体积增大, 平衡氢压降低, 生成热减小, 氢化物稳定性提高。而少量的Sn 对吸氢能力降低较小, 是理想的替代元素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号