首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
陈阳  崔晓莉 《化学进展》2021,33(8):1249-1269
锂离子电池是一种能量密度高、安全稳定和使用寿命长的储能器件,已广泛应用于移动电子设备和电动汽车等领域。二氧化钛(TiO2)具有无毒害、价格低廉、储量大和化学结构稳定等优点,是一种具有应用前景的负极材料。然而,TiO2的实际应用受限于自身较低电子电导率和锂离子(Li+)扩散系数。本文总结了TiO2三种常见晶型的储锂机制(锐钛矿TiO2两相固溶储锂机制、TiO2(B)本征赝电容储锂机制和金红石TiO2电位控制相变过程);针对其电子传导和Li+扩散能力的不足,详细综述了纳米结构维度设计、本征/非本征电子结构调控(元素掺杂、Ti3+自掺杂和高导电材料修饰)和异相结优化改性三方面的研究进展。最后展望了TiO2材料在锂离子电池及其他二次电池领域的发展趋势和应用前景。  相似文献   

2.
徐黎黎  任冬燕  赵骁锋  易勇 《电化学》2021,27(5):570-578
探寻具有高导电性和高催化活性的析氢反应(HER)催化材料一直是可持续能源发展研究中的热点。Ti2C具有表面活性位点多和优良的力学稳定性、导电性等,已成为潜在的制氢催化剂。然而,终端O修饰Ti2C表面,会降低该材料的导电性,进而限制了电子在价带与导带间的输运。本研究通过Nb掺杂,构建双电层Janus-TiNbCO2,并借助VASP软件研究了Janus-TiNbCO2的能带结构、HER性能和HER反应路径过渡态。结果表明,Janus-TiNb-CO2为导体材料,其在应力、氧空位缺陷和H*覆盖度的影响下,均表现出极优异的催化活性,计算获得的最优ΔGH*值为0.02 eV。H*在Janus-TiNbCO2上可能以Heyrovsky路径进行反应,该路径的迁移能势垒为0.23 eV。Janus-TiNbCO2是一种具有HER应用前景的催化材料。  相似文献   

3.
张和  张梦诗  廖世军 《应用化学》2018,35(11):1277-1288
富锂三元层状正极材料(xLi2MnO3·(1-x)LiMO2(0<x<1,M=Mn,Ni,Co))因其远高于其它正极材料的放电比容量而被视为下一代锂离子电池正极材料的最佳选择之一,是未来锂离子电池研究和发展的重点。 但由于其循环性能差、库伦效率低等缺陷,富锂正极材料迟迟不能实现商业化生产。 本文将介绍近几年国内外富锂三元层状正极材料的最新研究进展,主要包括富锂三元层状正极材料的组成、制备技术、结构和性能研究以及包覆与掺杂等改性方面的研究进展,同时对富锂层状正极材料未来的发展趋势和前景作了展望。  相似文献   

4.
二硒化钨具有优异导电性、高比表面积和大间距层状结构等特点,能作为催化材料有效提升锂硫电池的性能;然而少量的边缘活性位点阻碍了其催化活性的进一步提升.通过引入原子空位制造表面缺陷,可使其暴露更多的表面活性位点,提高催化活性.本文通过第一性原理计算考察了不同Se空位缺陷浓度(3.125%,6.25%,9.375%和12.5%)WSe2表面的多硫化物吸附能力、锂离子迁移能力和多硫化物转化能力,探究了缺陷改性硒化钨在锂硫电池中的应用潜力.结果表明,6.25%中等空位缺陷浓度的WSe2表面具有适中的多硫化物吸附能力、快速的锂离子迁移和对于充电放电过程的同步促进作用,是最优势的表面;3.125%的低空位缺陷WSe2表面对于多硫化物吸附、锂离子迁移和充放电过程均不利;9.375%和12.5%的高空位缺陷WSe2表面虽然有利于锂离子迁移,但是对于短链多硫化物的吸附能力过强,同时不利于放电过程.  相似文献   

5.
锂离子电池(LIB)正极材料比容量及结构稳定性的提高是提升电池整体性能的重要因素. 本工作选取层状无钴正极材料Li(Li0.17Ni0.17Al0.04Fe0.13Mn0.49)O2 (LNAFMO)为研究对象, 使用GGA (generalized gradient approximation)+U (Hubbard U value)方法研究了体系在充电时几何和电子结构变化、氧释放焓、脱锂形成能和脱锂电压. 研究结果表明, 充电时LNAFMO体系首先Ni氧化, 然后Fe氧化, 最后O氧化. 与未掺杂Al的Li(Li0.17Ni0.17Fe0.17Mn0.49)O2 (LNFMO)体系不同的是, 除具有线性Li-O-Li和Fe-O-Li构型的氧离子更容易给出电子外, 具有线性Al-O-Li构型的氧离子也参与电荷补偿, 并且氧离子具有很强的活性, 这将避免参与氧化的氧离子过分集中, 有利于结构的稳定; Al的掺杂能进一步抑制氧的释放, 这将提升体系的结构稳定性和电池循环性能. 该研究为设计一种低经济成本、循环性良好、高能量密度的锂离子电池正极材料奠定了坚实的理论依据.  相似文献   

6.
采用水热法制备了Co3O4/CeO2(x)[x为钴铈原子摩尔比n(Co):n(Ce)=6:49:1]和Ce1-yCoyO2-δ(y=0.10.4)2个系列复合氧化物, 并表征了材料的物理化学性质, 考察了这些氧化物作为氧载体参与甲烷化学链转化(化学链燃烧和化学链部分氧化)的反应性能. 结果表明, 2类复合氧化物的甲烷反应活性均明显优于单一氧化物CeO2或Co3O4, 但2类氧载体上的甲烷反应产物的选择性具有明显差异. Ce1-yCoyO2-δ氧载体形成了Ce-Co-O固溶体, 储氧能力明显增强, 体相晶格氧迁移速率与甲烷活化速率匹配较好, 甲烷反应产物以CO和H2的合成气为主, 有利于甲烷的化学链部分氧化. Co3O4/CeO2(x)氧载体中CeO2与Co3O4之间的相互作用改善了材料的储氧能力和氧化活性, 其与甲烷反应时主要生成CO2, 有利于甲烷化学链燃烧. 连续性化学链循环实验表明, 2类氧载体均具有较好的再生性能和循环稳定性.  相似文献   

7.
主要合成了具有尖晶石结构的Li4Ti5O12亚微米球电极材料,并研究了其作为锂离子电池负极材料的电化学性能.材料的制备分为三个步骤:TiCl4水解得到金红石相的TiO2,然后将得到的TiO2与LiOH进行水热反应得到中间相LiTi2O4+δ,最后将中间相高温煅烧得到尖晶石结构的Li4Ti5O12.采用XRD、SEM和TEM等手段对材料的结构和形貌进行表征.结果表明,尖晶石相的Li4Ti5O12负极材料具有分级结构,是由20~30nm的小颗粒堆积成约为200~300nm的亚微米球.将制备的Li4Ti5O12材料进行恒电流充放电测试表明,材料具有优异的倍率放电性能和较好的循环可逆性;在1C充放电时,首次放电比容量达到174.3mAh/g,在第5~50次循环过程中仅有微小的不可逆容量损失.采用循环伏安法测得Li+的扩散系数为1.03×10-7cm2/s.研究表明合成的Li4Ti5O12亚微米球在高效可充电锂离子电池中具有良好的应用前景.  相似文献   

8.
半导体光生电荷分离是光催化过程中的关键步骤之一,其效率极大地影响了最终光催化性能.将TiO2纳米片与石墨烯复合,能够促进TiO2中光生电子和空穴的分离,从而提高其光催化活性.为了研究光生电荷的分离对TiO2/石墨烯复合材料光催化性能的影响,通过调控TiO2纳米片的尺寸来调节TiO2/石墨烯复合材料中光生电荷分离的能力,然后研究其对TiO2/石墨烯复合材料光催化性能的影响.合成了一系列不同厚度的TiO2纳米片,将其与石墨烯复合,并通过光沉积负载Pt纳米颗粒作为助催化剂,用于光催化产氢.实验结果显示,随着TiO2纳米片厚度减小,其与石墨烯形成的复合结构的光催化性能显著提高.这主要是由于TiO2纳米片厚度减小时,光生电子沿厚度方向穿过TiO2纳米片迁移到石墨烯的距离缩短,从而减少了光生电子在迁移过程中与空穴的复合;同时TiO2纳米片厚度减小使其比表面积增大,使得TiO2/石墨烯界面面积增大,从而使石墨烯更好地分离出TiO2中的光生电子,有更多的光生电子到达石墨烯参与催化反应,提高TiO2/石墨烯复合材料的光催化性能.此研究表明通过控制TiO2纳米片的尺寸来调控TiO2/石墨烯复合材料中光生电子和空穴的分离,是显著提高其光催化性能的有效途径.  相似文献   

9.
LiTi2O4用作锂离子电池负极的研究进展   总被引:1,自引:0,他引:1  
LiTi2O4具有长的嵌锂反应循环寿命、较低的电位和良好的导电性,是继碳素材料和Li4Ti5O12之后的又一新型锂离子电池负极材料,有望在大电流和动力锂离子电池中得到较大的应用.本文介绍了LiTi2O4负极材料的晶体结构、物理特性、制备方法、电化学性能及其应用研究进展,并分析了其微观导电机理.  相似文献   

10.
氮化碳材料固有的导电性差、电子迁移率低等问题导致高光生电荷复合率,阻碍了其光生电荷存储性能的提高.为此,构建了TiO2富碳氮化碳共轭聚合物(CPCN)界面异质结,以提高光生电荷分离率.采用具有高比表面积(220.03 m2/g)的TiO2纳米晶介孔薄膜作为电子传输物质,通过增大TiO2与CPCN之间的界面面积提高了电极反应活性,促进了光生空穴的高效抽取,获得了197 C/g的光生电荷存储容量.  相似文献   

11.
The selective oxidation of methane to basic petrochemicals (ethylene and ethane) is desirable and has attracted extensive research attention. The oxidative coupling of methane (OCM) is considered a promising one-step route for the production of C2 compounds (ethylene and ethane) from methane, and has been the focus of industrial and fundamental studies. It is widely accepted that the composition is a crucial factor governing the activity of a catalyst system. It was found that the phase structures, basicity, existing status and distribution of the active components, oxygen species, and chemical states of the catalyst were influenced by the composition and ratio, resulting in different catalytic performances for the OCM. In this study, a series of solid acid WO3/TiO2-supported lithium-manganese oxide catalysts for OCM were synthesized via the impregnation method. The impacts of diverse compositions, such as the individual contents (Li and Mn) and dual contents (Li-Mn), on the OCM were investigated in detail, using inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, CO2-temperature-programmed desorption, O2-temperature-programmed desorption, H2-temperature-programmed reduction, Raman spectroscopy, X-ray photoelectron spectroscopy, and CH4-temperature-programmed surface reaction. The addition of Li content to the catalyst not only led to the anatase-to-rutile crystal structure transformation of TiO2, and the reduction of the high-valence-state Mn species to low-valence-state Mn, but also increased the content of surface lattice oxygen and decreased the surface basicity. The observed effects on the structures and catalytic performance suggest that the Li content is helpful in suppressing the formation of completely oxidized CO2, and increases the C2 selectivity. Moreover, increasing the Li content of the catalyst facilitated the mobility of the lattice oxygen, which triggered the promotion of CH4 activation, thereby enhancing the OCM catalytic performance. The Mn content acted as the active sites for OCM; therefore, the performance of the catalyst was closely related to the Mn concentration and valence state. However, the WO3/TiO2-supported catalyst with excessive Mn content exhibited a high surface basicity, high valence state of Mn, and low abundant lattice oxygen, which was unfavorable for C2 selectivity. The Raman spectroscopy results revealed that MnTiO3 was formed due to the co-existence of Li and Mn on WO3/TiO2, and played an essential role in improving the low-temperature OCM performance. There was a synergic effect of the Li and Mn components on the OCM. The optimal performance (16.3% C2 yield) was achieved over the WO3/TiO2-supported lithium-manganese catalyst with n(Li) : n(Mn) = 2 : 1 at 750 ℃.  相似文献   

12.
MXene是一种新型的二维析氢催化材料,其表面容易被亲水基团O和OH混合覆盖。我们基于第一性原理计算的方法,研究了M_2XO_(2-2x)(OH)_(2x)(M=Ti,V;X=C,N)的析氢催化活性。计算结果显示,M_2XO_(2-2x)(OH)_(2x)的析氢催化活性与其表面OH覆盖率(X)密切相关。对Ti_2CO_(2-2x)(OH)_(2x)来说,OH覆盖率不超过1/3时,具有优异的析氢催化活性。对Ti_2NO_(2-2x)(OH)_(2x)、V_2CO_(2-2x)(OH)_(2x)和V_2NO_(2-2x)(OH)_(2x)来说,OH覆盖率分别达到4/9、1/3和5/9时,才具有最佳的析氢催化活性。接着,电荷分析显示OH覆盖率会显著影响M_2XO_(2-2x)(OH)_(2x)活性位点O基团的电荷量。最后,我们从态密度的角度揭示了析氢催化活性变化的原因,即活性位点O基团的氧化性随OH覆盖率的增大而被削弱。因此,本文提出了调节表面OH覆盖率来获取M_2XO_(2-2x)(OH)_(2x)最佳析氢催化活性状态的方法,这在工业制氢生产过程中具有重要的应用价值。  相似文献   

13.
Lithium (Li)-based batteries are the dominant energy source for consumer electronics, grid storage, and electrified transportation. However, the development of batteries based on graphite anodes is hindered by their limited energy density. With its ultrahigh theoretical capacity (3860 mAh∙g−1), low redox potential (−3.04 V), and satisfactorily low density (0.54 g∙cm−3), Li metal is the most promising anode for next-generation high-energy-density batteries. Unfortunately, the limited cycling life and safety issues raised by dendrite growth, unstable solid electrolyte interphase, and "dead Li" have inhibited their practical use. An effective strategy is to develop a suitable lithiophilic matrix for regulating initial Li nucleation behavior and controlling subsequent Li growth. Herein, single-atom cobalt coordinated to oxygen sites on graphene (Co-O-G SA) is demonstrated as a Li plating substrate to efficiently regulate Li metal nucleation and growth. Owing to its dense and more uniform lithiophilic sites than single-atom cobalt coordinated to nitrogen sites on graphene (Co-N-G SA), high electronic conductivity, and high specific surface area (519 m2∙g−1), Co-O-G SA could significantly reduce the local current density and promote the reversibility of Li plating and stripping. As a result, the Co-O-G SA based Li anodes exhibited a high Coulombic efficiency of 99.9% at a current density of 1 mA∙cm−2 with a capacity of 1 mAh∙cm−2, and excellent rate capability (high current density of 8 mA∙cm−2). Even at a high plating capacity of 6 mAh∙cm−2, the Co-O-G SA electrode could stably cycle for an ultralong lifespan of 1300 h. In the symmetric battery, the Co-O-G SA based Li anode (Co-O-G SA/Li) possessed a stable voltage profile of 18 mV for 780 h at 1 mA∙cm−2, and even at a high current density of 3 mA∙cm−2, its overpotential maintained a small hysteresis of approximately 24 mV for > 550 h. Density functional theory calculations showed that the surface of Co-O-G SA had a stronger interaction with Li atoms with a larger binding energy, −3.1 eV, than that of Co-N-G SA (−2.5 eV), leading to a uniform distribution of metallic Li on the Co-O-G SA surface. More importantly, when matched with a sulfur cathode, the resulting Co-O-G SA/lithium sulfur full batteries exhibited a high capacity of 1002 mAh∙g−1, improved kinetics with a small polarization of 191 mV, and an ultralow capacity decay rate of 0.036% per cycle for 1000 cycles at 0.5C (1C = 1675 mA∙g−1) with a steady Coulombic efficiency of nearly 100%. Therefore, this work provides novel insights into the coordination environment of single atoms for the chemistry of Li metal anodes for high-energy-density batteries.  相似文献   

14.
由于具有高安全性和优异的循环稳定性,二氧化钛(TiO2)作为负极材料被广泛地应用于锂离子电池领域。但是较差的导电性和离子传输速率限制了TiO2的进一步应用和发展。鉴于此,我们以花状NH2-MIL-125 (Ti)为前驱体和硬模板,成功合成出了具有花状结构的超细纳米TiO2/多孔氮掺杂碳片(N-doped porous carbon)复合物(记为FL-TiO2/NPC)。过程中所制备的纳米TiO2-金属有机构架(Ti-MOF)展现出由二维褶皱多孔纳米片堆积、组装而成的花状结构。一方面,二维褶皱纳米片包含TiO2纳米颗粒可以增大活性物质与电解液的接触面积;另一方面,氮掺杂多孔碳基体可以提高整体复合物的导电性和结构完整性。将所获得的FL-TiO2/NPC作为负极组装成的锂半电池, 在0.5 A·g-1、300圈后仍有384.2 mAh·g-1以及在1 A·g-1、500圈仍有279.1 mAh·g-1的比容量。进一步性能测试表明,在2 A·g-1、2000圈长循环测试后,其仍能保持256.5 mAh·g-1的比容量和接近100%的库伦效率。该优异的电化学活性和稳定性主要起源于材料独特的花状结构。我们的合成策略为今后制备高储锂性能的金属氧化物/多孔氮掺杂碳负极提供了一种新的思路。  相似文献   

15.
First principles calculations of Li insertion in a variety of titanate structures have revealed a common mechanism underlying the intercalation behavior of these materials. The mechanism is based on the accommodation of the electron density donated upon intercalation in particular orbitals of Ti ions and is governed by a strong coupling between the structural and electronic degrees of freedom. A new predictive model is developed which relates the local structure of TiO2 polymorphs to their phase behavior upon Li intercalation.  相似文献   

16.
Layered intercalation compounds are the dominant cathode materials for rechargeable Li-ion batteries. In this article we summarize in a pedagogical way our work in understanding how the structure’s topology, electronic structure, and chemistry interact to determine its electrochemical performance. We discuss how alkali–alkali interactions within the Li layer influence the voltage profile, the role of the transition metal electronic structure in dictating O3-structural stability, and the mechanism for alkali diffusion. We then briefly delve into emerging, next-generation Li-ion cathodes that move beyond layered intercalation hosts by discussing disordered rocksalt Li-excess structures, a class of materials which may be essential in circumventing impending resource limitations in our era of clean energy technology.  相似文献   

17.
柠檬酸溶胶-凝胶法制备的Ce1-xZrxO2: 结构及其氧移动性   总被引:1,自引:0,他引:1  
采用 XRF、XRD、Raman、XPS、H2-TPR 以及与氩离子刻蚀相结合的XPS等表征技术对柠檬酸溶胶-凝胶法制备的Ce1-xZrxO2 (0≤x≤1)样品的结构及其氧移动性进行了研究. 结果表明, Ce1-xZrxO2 样品的晶型结构对其中氧的移动性有明显影响. 当x≤0.15 时, Ce1-xZrxO2 以立方CeO2相 Ce-Zr-O 固溶体存在, 随着Zr含量的逐渐增加, CeO2晶胞体积减小、氧空位浓度增加, 氧移动性逐渐增强; 当x>0.15时, 形成四方ZrO2相和立方CeO2相Ce-Zr-O固溶体的混合物, 随着Zr含量的逐渐增加, 四方ZrO2相的含量增加、氧空位浓度减小, 氧移动性逐渐减弱. 因此, Ce0.852Zr0.152O2样品具有最高的氧移动性.  相似文献   

18.
本文以聚乙烯醇(PVA)、苯胺(ANI)、吡咯(Py)及钛酸丁酯(TBOT)为原料,通过溶胶-凝胶法、原位氧化聚合法及冷冻-融溶法一步得到聚乙烯醇/聚苯胺/聚吡咯/TiO 2(PVA/PANI/PPy/TiO 2)杂化水凝胶。结果表明,该杂化水凝胶具有优异的力学性能和导电性能。当n(ANI)∶[KG-*3/5]n(Py)=8∶[KG-*3/5]2(TBOT体积为100μL)时,其压缩强度高达2.45 MPa。同时,在外加电源的作用下,该凝胶能够使灯泡发光。当n(ANI)∶[KG-*3/5]n(Py)=2∶[KG-*3/5]8(TBOT体积为150μL)时,杂化水凝胶的电导率(0.25 S/m)最好。该杂化水凝胶有望广泛地应用在柔性可穿戴电子器件、安全离子电池、传感器和生物器件等领域。  相似文献   

19.
以TiMnx (x = 1.4, 1.5, 1.6, 1.7)非计量比合金为对象,系统研究了储氢容量与其内在结构之间的相关性。结果表明,所有合金的主相均为C14型Laves相,但其储氢容量却存在显著差异。其中TiMn1.4合金的储氢量约为0.65% (w,质量分数),吸/放氢平台较倾斜,且存在明显的滞后;而TiMn1.5合金的可逆储氢量达到1.2% (w),平台较为平坦;但继续增加x,其储氢量反而降低,如x = 1.6合金的储氢量仅为0.30% (w),而x = 1.7合金则几乎不吸氢。进一步结构解析表明,上述储氢容量的迥异主要归因于部分Ti原子占据Mn(2a)位置,且其占位率随x的增加而降低,随之C14相中贮氢四面体间隙体积减小;而引起贮氢四面体间隙体积发生变化的主要因素是Ti―Ti键和Mn(2a)―Mn(2a)键的键长,其中Mn(2a)―Mn(2a)键长的增加对合金储氢容量的提升起关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号