首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
2.
3.
The geometrical structure, stability, magnetism, and electronic structure of bimetallic clusters AuM2 and Au2M2, where M are 4d transition metal elements, are investigated systematically by using the first-principles method based on density functional theory. The calculation results show that there is a large amount of low-energy isomers with the very similar structure. AuM2 and Au2M2 clusters display dramatic magnetism. The magnetic moment of the 4d element is either enhanced or weakened with respect to the bulk value, which is largely dependent on the orbital exchange-splitting. Supported by the National Natural Science Foundation of China (Grant Nos. 10674015 and 10604035)  相似文献   

4.
The two-neutrino double-beta decay of 124, 126Xe , 128, 130Te , 130, 132Ba and 150Nd isotopes is studied in the Projected Hartree-Fock-Bogoliubov (PHFB) model. Theoretical 2ν β-β- half-lives of 128, 130Te , and 150Nd isotopes, and 2ν β+β+ , 2ν β+ EC and 2ν ECEC for 124, 126Xe and 130, 132Ba nuclei are presented. Calculated quadrupolar transition probabilities B(E2 : 0+ → 2+) , static quadrupole moments and g -factors in the parent and daughter nuclei reproduce the experimental information, validating the reliability of the model wave functions. The anticorrelation between nuclear deformation and the nuclear transition matrix element M is confirmed.  相似文献   

5.
Iddo Eliazar 《Physica A》2011,390(11):1982-1990
This paper links together the notion of entropy and the notion of inequality indices—the former is applied in Statistical Physics to measure randomness, and the latter is applied in Economics to measure evenness. We explore the profound similarities between these diametric notions, construct a mathematical transformation between them, and show how randomness can be used to measure evenness-and vice versa. In particular, we devise and study Rényi’s index—a randomness-based measure of evenness with special properties. Rényi’s index is established as an effectual gauge of statistical heterogeneity in the context of general probability laws defined on the positive half-line.  相似文献   

6.
We have investigated the structural, elastic, electronic, optical and thermal properties of c-SiGe2N4 by using the ultrasoft pseudopotential density functional method within the generalized gradient approximation. The calculated structural parameters, including the lattice constant, the internal free parameter, the bulk modulus and its pressure derivative are in agreement with the available data. The independent elastic constants and their pressure dependence, calculated using the static finite strain technique, satisfy the requirement of mechanical stability, indicating that c-SiGe2N4 compound could be stable. We derive the shear modulus, Young’s modulus, Poisson’s ratio and Lamé’s coefficients for ideal polycrystalline c-SiGe2N4 aggregate in the framework of the Voigt-Reuss-Hill approximation. We estimate the Debye temperature of this compound from the average sound velocity. Band structure, density of states, Mulliken charge populations and pressure coefficients of energy band gaps are investigated. Furthermore, in order to understand the optical properties of c-SiGe2N4, the dielectric function, refractive index, extinction coefficient, optical reflectivity and electron energy loss are calculated for radiation up to 40 eV. Thermal effects on some macroscopic properties of c-SiGe2N4 are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–2000 K. For the first time, the numerical estimates of the elastic constants and related parameters, and the thermal properties are performed for c-SiGe2N4.  相似文献   

7.
We report a high‐repetition‐rate picosecond fiber‐based source at 2.1 µm offering exceptional performance capabilities over existing lasers near this wavelength, providing high average power and efficiency together with excellent spectral, power and beam pointing stability, in high spatial beam quality. This new source is based on a near‐degenerate MgO:PPLN optical parametric oscillator (OPO) pumped by an Yb‐fiber laser at 1064 nm, and incorporating a diffraction grating for spectral control. The device provides as much as 7.1 W of average power at 2.1 µm for a pump power of 18 W at an extraction efficiency of 39.4% in pulses of 20 ps at 79.3 MHz. The output exhibits passive power stability better than 1% rms over 15 hours, and a beam pointing stability ∼40 µrad over 1 hour, in high spatial quality with M2 ∼ 3.5. The output beam is linearly polarized and the pulse train has an amplitude stability better than 3.4% rms over 2 µsec. Radio‐frequency measurements of the output pulse train also confirm high temporal stability and low timing jitter, indicating that the source is ideal for variety of applications including pumping long‐wavelength mid‐infrared OPOs. Photograph shows the temperature‐controlled, 50‐mm‐long MgO:PPLN crystal inside the cavity, used as nonlinear gain medium in the picosecond source operating at 2.1 µm. The visible light is the result of non‐phase‐matched second harmonic generation of the pump beam in the MgO:PPLN crystal.

  相似文献   


8.
We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural, elastic, mechanical, electronic, and optical properties of cubic Mg2TiO4. The calculated lattice parameter a is in good agreement with the experimental values. The independent elastic constants are calculated. The mechanical properties including bulk, shear and Young’s modulus, Poisson’s coefficient, compressibility and Lamé’s constants are obtained using the Voigt-Reuss-Hill method. Debye temperature is estimated using the Debye-Grüneisen model. Band structure, density of states and charge densities are shown and analyzed. In order to clarify the mechanism of optical transitions of cubic Mg2TiO4, the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and complex conductivity function are calculated.  相似文献   

9.
The change in the neutron single-particle structure of (1f?2p)-shell magic nuclei near the Fermi energy with an increase in the number of protons in the 1f 7/2 subshell from 0 for 48Ca to 8 for 56Ni has been investigated. Good agreement of the experimental and estimated values of the single-particle energies E nlj of the bound states of neutrons in these nuclei with the results of calculations within the dispersive optical model is obtained.  相似文献   

10.
Magnetic, elastic, magnetoelastic, transport, and magnetotransport properties of the Eu0.55Sr0.45MnO3 ceramics have been studied. A break was detected in the temperature dependence of electrical resistivity ρ(T) near the temperature of the magnetic phase transformation (41 K), with the material remaining an insulator down to the lowest measurement temperature reached (ρ=106 Ω cm at 4.2 K). In the interval 4.2≤T≤50 K, the isotherms of the magnetization, volume magnetostriction, and ρ were observed to undergo jumps at the critical field HC1, which decreases with increasing T. For 50≤T≤120 K, the jumps in the above curves persist, but the pattern of the curves changes and HC1 grows with increasing T. The magnetoresistance Δρ/ρ = (ρ H H=0)/ρ H is positive for H<HC1 and passes through a maximum at 41 K, where Δρ/ρ = 6%. For H>HC1, the magnetoresistance is negative, passes through a minimum near 41 K, and reaches a colossal value of 3×105 % at H=45 kOe. The volume magnetostriction is negative and attains a giant value of 4.5×10?4atH=45 kOe. The observed properties are assigned to the existence of three phases in Eu0.55Sr0.45MnO3, namely, a ferromagnetic (FM) phase, in which carriers are concentrated because of the gain in s-d exchange energy, and two antiferromagnetic (AFM) phases of the A and CE types. Their fractional volumes at low temperatures were estimated to be as follows: ~3% of the sample volume is occupied by the FM phase; ~67%, by the CE-type AFM phase; and ~30%, by the A-type AFM phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号