首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate depth profiling of polymer materials by using large argon (Ar) cluster ion beams. In general, depth profiling with secondary ion mass spectrometry (SIMS) presents serious problems in organic materials, because the primary keV atomic ion beams often damage them and the molecular ion yields decrease with increasing incident ion fluence. Recently, we have found reduced damage of organic materials during sputtering with large gas cluster ions, and reported on the unique secondary ion emission of organic materials. Secondary ions from the polymer films were measured with a linear type time‐of‐flight (TOF) technique; the films were also etched with large Ar cluster ion beams. The mean cluster size of the primary ion beams was Ar700 and incident energy was 5.5 keV. Although the primary ion fluence exceeded the static SIMS limit, the molecular ion intensities from the polymer films remained constant, indicating that irradiation with large Ar cluster ion beams rarely leads to damage accumulation on the surface of the films, and this characteristic is excellently suitable for SIMS depth profiling of organic materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We have investigated the merits of fullerene cluster ions as projectiles in time‐of‐flight secondary neutral mass spectrometry (ToF‐SNMS) sputter depth profiling of an Ni:Cr multilayer sample similar to the corresponding NIST depth profiling standard. It is shown that sputter erosion under bombardment with C60+ ions of kinetic energies between 10 and 20 keV provides good depth resolution corresponding to interface widths of several nanometres. This depth resolution is maintained during the complete removal of the multilayer stack with a total thickness of 500 nm. This finding is in contrast to the case where atomic Ga+ projectile ions of comparable kinetic energy are used, demonstrating the unique features of cluster projectiles in sputter depth profiling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
We present the results of a VAMAS (Versailles project on Advanced Materials and Standards) interlaboratory study on organic depth profiling, in which twenty laboratories submitted data from a multilayer organic reference material. Individual layers were identified using a range of different sputtering species (C60n+, Cs+, SF5+ and Xe+), but in this study only the C60n+ ions were able to provide truly ‘molecular’ depth profiles from the reference samples. The repeatability of profiles carried out on three separate days by participants was shown to be excellent, with a number of laboratories obtaining better than 5% RSD (relative standard deviation) in depth resolution and sputtering yield, and better than 10% RSD in relative secondary ion intensities. Comparability between laboratories was also good in terms of depth resolution and sputtering yield, allowing useful relationships to be found between ion energy, sputtering yield and depth resolution. The study has shown that organic depth profiling results can, with care, be compared on a day‐to‐day basis and between laboratories. The study has also validated three approaches that significantly improve the quality of organic depth profiling: sample cooling, sample rotation and grazing angles of ion incidence. © Crown copyright 2010.  相似文献   

4.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C60+ primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C60+ primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01–2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar+ was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C60+ bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C60+ beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C60+ sputtering. Furthermore, because C60+ is responsible for generating the molecular ions, the dosage of the auxiliary Ar+ does not significantly affect the quantification curves.  相似文献   

5.
In this study, we present molecular depth profiling of multilayer structures composed of organic semiconductor materials such as tris(8‐hydroxyquinoline)aluminum (Alq3) and 4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPD). Molecular ions produced from Alq3 and NPD were measured by linear‐type time‐of‐flight (TOF) mass spectrometry under 5.5 keV Ar700 ion bombardment. The organic multilayer films were analyzed and etched with large Ar cluster ion beams, and the interfaces between the organic layers were clearly distinguished. The effect of temperature on the diffusion of these materials was also investigated by the depth profiling analysis with Ar cluster ion beams. The thermal diffusion behavior was found to depend on the specific materials, and the diffusion of Alq3 molecules was observed to start at a lower temperature than that of NPD molecules. These results prove the great potential of large gas cluster ion beams for molecular depth profiling of organic multilayer samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The desorption of atomic and molecular species from surfaces bombarded by fast heavy ions (Z ? 20; E ? 0.5 MeV/amu) is attractive for surface and microscopic characterization. Only a low-intensity probe beam is needed, the escape depth of desorbed species is shallow (ca. 10 Å), and desorbed ions are efficiently detected with a time-of-flight mass spectrometer. Thus, particle-induced desorption mass spectrometry (PDMS) maintains sample integrity and charging effects are avoided. PDMS is useful for surface analysis of glasses and plastics by using californium-252 fission fragments for bombardment. Inorganic and organic surface constituents can be detected simultaneously; mass resolution is good. For lithium in glass, the detection limit is about 1 pg (ca. 100 μg g?1. The PDMS technique can be combined with sequential ion etching for depth profiling. The feasibility of PDMS for microscopic analysis with a collimated 84-MeV Kr7+ beam (target diameter ca. 11 μm) is discussed.  相似文献   

7.
For more than three decades, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) has been used for elemental depth profiling. In recent years, cluster primary ion sources (principally, C60+, Bin+, and Aun+) have become widely available, and they can greatly enhance the signal intensity of molecular ions (10–1000 times). Understanding the performance of cluster ion analysis beams used in elemental depth profiling can greatly assist normal ToF‐SIMS users in choosing the optimal analysis beam for depth profiling work. Presently, however, the experimental data are lacking, and such choices are difficult to make. In this paper, hydrogen and deuterium depth profiling were studied using six different analysis beams—25 keV Bi+, Bi3+, Bi5+, 50 keV Bi32+, 10 keV C60+, and 20 keV C602+. The effort shows that cluster primary ions do enhance H? and D? yields, but the enhancement is only about 1.5–4.0 times when compared to atomic Bi+ ions. Because the currents of atomic ion analysis beams are much stronger than the currents of cluster ion analysis beams for most commercial ToF‐SIMS instruments, the atomic ion analysis beams can provide the strongest H? and D? signal intensities, and may be the best choices for hydrogen and deuterium depth profiling. In addition, two representative nuclides, 30Si and 18O, were also studied and yielded results similar to those of H? and D?. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Depth profiling of an organic reference sample consisting of Irganox 3114 layers of 3 nm thickness at depths of 51.5, 104.5, 207.6 and 310.7 nm inside a 412 nm thick Irganox 1010 matrix evaporated on a Si substrate has been studied using the conventional Cs+ and O2+ as sputter ion beams and Bi+ as the primary ion for analysis in a dual beam time‐of‐flight secondary ion mass spectrometer. The work is an extension of the Versailles Project on Advanced Materials and Standards project on depth profiling of organic multilayer materials. Cs+ ions were used at energies of 500 eV, 1.0 keV and 2.0 keV and the O2+ ions were used at energies of 500 eV and 1.0 keV. All four Irganox 3114 layers were identified clearly in the depth profile using low mass secondary ions. The depth profile data were fitted to the empirical expression of Dowsett function and these fits are reported along with the full width at half maxima to represent the useful resolution for all the four delta layers detected. The data show that, of the conditions used in these experiments, an energy of 500 eV for both Cs+ beam and O2+ beam provides the most useful depth profiles. The sputter yield volume per ion calculated from the slope of depth versus ion dose matches well with earlier reported data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A size‐selected argon (Ar) gas‐cluster ion beam (GCIB) was applied to the secondary ion mass spectrometry (SIMS) of a 1,4‐didodecylbenzene (DDB) thin film. The samples were also analyzed by SIMS using an atomic Ar+ ion projectile and X‐ray photoelectron spectroscopy (XPS). Compared with those in the atomic‐Ar+ SIMS spectrum, the fragment species, including siloxane contaminants present on the sample surface, were enhanced several hundred times in the Ar gas‐cluster SIMS spectrum. XPS spectra during beam irradiation indicate that the Ar GCIB sputters contaminants on the surface more effectively than the atomic Ar+ ion beam. These results indicate that a large gas‐cluster projectile can sputter a much shallower volume of organic material than small projectiles, resulting in an extremely surface‐sensitive analysis of organic thin films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Peptide-doped trehalose thin films have been characterized by bombardment with energetic cluster ion beams of C60+ and Aux+ (x = 1, 2, 3). The aim of these studies is to acquire information about the molecular sputtering process of the peptide and trehalose by measurement of secondary ion mass spectra during erosion. This system is important since uniform thin films of approximately 300 nm thickness can be reproducibly prepared on a Si substrate, allowing detailed characterization of the resulting depth profile with different projectiles. The basic form of the molecular ion intensity as a function of ion dose is described by a simple analytical model. The model includes parameters such as the molecular sputtering yield, the damage cross section of the trehalose or the peptide, and the thickness of a surface layer altered by the projectile. The results show that favorable conditions for successful molecular depth profiling are achieved when the total sputtering yield is high and the altered layer thickness is low. Successful molecular depth profiles are achieved with all of the cluster projectiles, although the degree of chemical damage accumulation was slightly lower with C60. With C60 bombardment, the altered layer thickness of about 20 nm and the damage cross section of about 5 nm2 are physically consistent with predictions of molecular dynamics calculations available for similar chemical systems. In general, the model presented should provide guidance in optimizing experimental parameters for maximizing the information content of molecular depth profiling experiments with complex molecular thin film substrates.  相似文献   

11.
The sputtering properties of two representative cluster ion beams in secondary ion mass spectrometry (SIMS), C(60)(+) and Au(3)(+), have been directly compared. Organic thin films consisting of trehalose and dipalmitoylphosphatidylcholine (DPPC) are employed as prototypical targets. The strategy is to make direct comparison of the response of a molecular solid to each type of the bombarding cluster by overlapping the two ion beams onto the same area of the sample surface. The ion beams alternately erode the sample while keeping the same projectile for spectral acquisition. The results from these experiments are important to further optimize the use of cluster projectiles for SIMS molecular depth profiling experiments. For example, Au(3)(+) bombardment is found to induce more chemical damage as well as Au implantation when compared with C(60)(+). Moreover, C(60)(+) is found to be able to remove the damage and the implanted Au effectively. Discussions are also presented on strategies of enhancing sensitivity for imaging applications with cluster SIMS.  相似文献   

12.
Molecular time of flight secondary ion mass spectrometry (ToF-SIMS) imaging and cluster ion beam erosion are combined to perform a three-dimensional chemical analysis of molecular films. The resulting dataset allows a number of artifacts inherent in sputter depth profiling to be assessed. These artifacts arise from lateral inhomogeneities of either the erosion rate or the sample itself. Using a test structure based on a trehalose film deposited on Si, we demonstrate that the “local” depth resolution may approach values which are close to the physical limit introduced by the information depth of the (static) ToF-SIMS method itself.  相似文献   

13.
X‐ray photoelectron spectroscopy is used to study a wide variety of material systems as a function of depth (“depth profiling”). Historically, Ar+ has been the primary ion of choice, but even at low kinetic energies, Ar+ ion beams can damage materials by creating, for example, nonstoichiometric oxides. Here, we show that the depth profiles of inorganic oxides can be greatly improved using Ar giant gas cluster beams. For NbOx thin films, we demonstrate that using Arx+ (x = 1000‐2500) gas cluster beams with kinetic energies per projectile atom from 5 to 20 eV, there is significantly less preferential oxygen sputtering than 500 eV Ar+ sputtering leading to improvements in the measured steady state O/Nb ratio. However, there is significant sputter‐induced sample roughness. Depending on the experimental conditions, the surface roughness is up to 20× that of the initial NbOx surface. In general, higher kinetic energies per rojectile atom (E/n) lead to higher sputter yields (Y/n) and less sputter‐induced roughness and consequently better quality depth profiles. We demonstrate that the best‐quality depth profiles are obtained by increasing the sample temperature; the chemical damage and the crater rms roughness is reduced. The best experimental conditions for depth profiling were found to be using a 20 keV Ar2500+ primary ion beam at a sample temperature of 44°C. At this temperature, there is no, or very little, reduction of the niobium oxide layer and the crater rms roughness is close to that of the original surface.  相似文献   

14.
Argon gas cluster ion beam sources are likely to become much more widely available on XPS and SIMS instruments in the next few years. Much attention has been devoted to their ability to depth profile organic materials with minimum damage. What has not been the focus of attention (possibly because it has been very difficult to measure) is the large ratio of sputter yield for organic materials compared with inorganic materials using these sources and the special opportunities this presents for studies of organic/inorganic interfaces. Traditional depth profiling by monatomic argon ions introduces significant damage into the organic overlayer, and because sputter rates in both organic and inorganic are similar for monatomic ions the interface is often ‘blurred’ due to knock‐on and other damage mechanisms. We have used a quartz crystal technique to measure the total sputter yield for argon cluster ions in a number of materials important in medical implants, biomaterials and diagnostic devices, including polymethyl methacrylate, collagen, hydroxyapatite, borosilicate glass, soda lime glass, silicon dioxide and the native oxides on titanium and stainless steel. These data fit a simple semi‐empirical equation very well, so that the total sputter yield can now be estimated for any of them for the entire range of cluster ion energy typical in XPS or SIMS. On the basis of our total sputter yield measurements, we discuss three useful ‘figures‐of‐merit’ for choosing the optimum cluster ion energy to use in depth profiling organic/inorganic samples. For highest selectivity in removing the organic but not the inorganic material the energy‐per‐atom in the cluster should be below 6 eV. A practical balance between selectivity and reasonably rapid depth profiling is achieved by choosing a cluster ion energy having between around 3 and 9 eV energy‐per‐atom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Argon cluster ions have enabled molecular depth profiling to unprecedented depths, with minimal loss of chemical information or changes in sputter rate. However, depth profiling of ultrathick films (>100 μm) using a commercial ion source oriented at 45° to the surface causes the crater bottom to shrink in size because of a combination of the crater wall angle, sputter rate differences along the trailing-edge crater wall, and undercutting on the leading-edge. The shrinking of the crater bottom has 2 immediate effects on dual-beam depth profiling: first is that the centering of the analysis beam inside the sputter crater will no longer ensure the best quality depth profile because the location of the flat crater bottom progressively shifts toward the leading-edge and second, the shifting of the crater bottom enforces a maximum thickness of the film that could be depth profiled. Experiments demonstrate that a time-of-flight secondary ion mass spectrometry instrument equipped with a 20 keV argon cluster source is limited to depth profiling a 180 μm-thick film when a 500 μm sputter raster is used and a 100 μm square crater bottom is to be left for analysis. In addition, depth profiling of a multilayer film revealed that the depth resolution degrades on trailing-edge side of the crater bottom presumably because of the redeposition of the sputtered flux from the crater wall onto the crater bottom.  相似文献   

16.
Alternating layers of two different organic materials, Irganox1010 and Irganox3114, have been created using vapor deposition. The layers of Irganox3114 were very thin ( approximately 2.5 nm) in comparison to the layers of Irganox1010 ( approximately 55 or approximately 90 nm) to create an organic equivalent of the inorganic 'delta-layers' commonly employed as reference materials in dynamic secondary ion mass spectrometry. Both materials have identical sputtering yields, and we show that organic delta layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling. We demonstrate, using a C(60) ion source, that the sputtering yield, S, diminishes with ion dose and that the depth resolution also degrades. By comparison with atomic force microscopy data for films of pure Irganox1010, we show that the degradation in depth resolution is caused by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Fragments characteristic of highly damaged material have intensity proportional to S, and those fragments with minimal molecular rearrangment exhibit intensities proportional to S(2). We demonstrate quantitative analysis of the amount of substance in buried layers of a few nanometer thickness with an accuracy of approximately 10%. Organic delta layers are valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.  相似文献   

17.
Langmuir-Blodgett multilayers of alternating barium arachidate and barium dimyristoyl phosphatidate are characterized by secondary ion mass spectrometry employing a 40 keV buckminsterfullerene (C60) ion source. These films exhibit well-defined structures with minimal chemical mixing between layers, making them an intriguing platform to study fundamental issues associated with molecular depth profiling. The experiments were performed using three different substrates of 306 nm, 177 nm, and 90 nm in thickness, each containing six subunits with alternating chemistry. The molecular subunits are successfully resolved for the 306 nm and 177 nm films by cluster ion depth profiling at cryogenic temperatures. In the depth profile, very little degradation was found for the molecular ion signal of the underneath layers compared with that of the top layer, indicating that the formation of chemical damage is removed as rapidly as it is formed. The resolving power decreases as the thickness of the alternating subunits decrease, allowing a depth resolution of 20 to 25 nm to be achieved. The results show the potential of LB films as an experimental model system for studying fundamental features of molecular depth profiling.  相似文献   

18.
A detailed depth characterization of multilayered polymeric systems is a very attractive topic. Currently, the use of cluster primary ion beams in time‐of‐flight secondary ion mass spectrometry allows molecular depth profiling of organic and polymeric materials. Because typical raw data may contain thousands of peaks, the amount of information to manage grows rapidly and widely, so that data reduction techniques become indispensable in order to extract the most significant information from the given dataset. Here, we show how the wavelet‐based signal processing technique can be applied to the compression of the giant raw data acquired during time‐of‐flight secondary ion mass spectrometry molecular depth‐profiling experiments. We tested the approach on data acquired by analyzing a model sample consisting of polyelectrolyte‐based multilayers spin‐cast on silicon. Numerous wavelet mother functions and several compression levels were investigated. We propose some estimators of the filtering quality in order to find the highest ‘safe’ approximation value in terms of peaks area modification, signal to noise ratio, and mass resolution retention. The compression procedure allowed to obtain a dataset straightforwardly ‘manageable’ without any peak‐picking procedure or detailed peak integration. Moreover, we show that multivariate analysis, namely, principal component analysis, can be successfully combined to the results of the wavelet‐filtering, providing a simple and reliable method for extracting the relevant information from raw datasets. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Elastic recoil detection (ERD) with energetic heavy ions (e.g. 60–120 MeV127I) is a suitable method to measure depth profiles of light and medium heavy elements in thin films. The advantages of this method are reliable and quantitative results and elementally and isotopically resolved depth profiles. A relative energy resolution of 0.07% has been measured in real ERD-experiments using the Q3D magnetic spectrograph at the Munich tandem accelerator and a large solid angle of detection of 5 msr. The good energy resolution allows atomic depth resolution near to the surface which has been obtained at flat and smooth carbon samples. A large solid angle of detection is necessary to measure a depth profile with the desired accuracy before the sample is significantly altered by the ion beam. As an example carbon profiles of thin carbon layers, prepared by a laser plasma ablation deposition process, have been investigated revealing the high depth resolution and its power to resolve elemental profiles at gradiated interfaces.  相似文献   

20.
Resonance ionization mass spectrometry was used to measure the composition of the sputtered flux from 15 keV Ga+, Au+, Au2 + and Au3 + primary ions impacting a 235U enriched U3O8 standard. We demonstrate that molecular fragmentation decreases as the primary ion mass and nuclearity increases. Stopping and range of ions in matter calculations show that cluster ions (Au2 + and Au3 +) deposit more of their energy via direct knock-ons with near-surface target atoms, whereas monatomic ions (Ga+ and Au+) penetrate much deeper into the target sub-surface region. We correlate these results to the experimental observations by showing that increased cluster ion sputter yields partition the projectile energy over a larger number of sputtered molecules. Therefore, while cluster ions deposit more total energy into the near surface region of the target compared to monatomic ions, the energy per molecule decreases with projectile mass and nuclearity. Less energy per molecule decreases the number of U–O bond breaks and, consequently, leads to a decrease in molecular fragmentation. Additionally, the extent of molecular fragmentation as a function of ion dose was evaluated. We show that molecular fragmentation increases with increased ion dose; primarily as a result of sub-surface chemical damage accumulation. The relative intensity of this effect appears to be projectile independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号