首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
轩华  刘静  李冰 《运筹与管理》2014,23(2):244-249
为满足实际生产环境对工件加工顺序和工件到达时间的要求,提出了具有新特征的单机总加权拖期调度问题,其特点体现在:工件有动态到达时间,且由工件优先级关系构成的优先级图为非连接图且存在环的情况,对该问题建立数学规划模型,在扩展Tang和Xuan等的基础上,提出了结合双向动态规划的拉格朗日松弛算法求解该问题。在该算法的设计中,提出双向动态规划算法求解拉格朗日松弛问题,使得它可处理优先级图中一个工件可能有多个紧前或紧后工件的情况,采用次梯度算法更新拉格朗日乘子,基于拉格朗日松弛问题的解设计启发式算法构造可行解。实验测试结果显示,所设计的拉格朗日松弛算法能够在较短的运行时间内得到令人满意的近优解,为更复杂的调度问题的求解提供了思路。  相似文献   

2.
本文提出了一个求不定二次规划问题全局最优解的新算法.首先,给出了三种计算下界的方法:线性逼近法、凸松弛法和拉格朗日松弛法;并且证明了拉格朗日对偶界与通过凸松弛得到的下界是相等的;然后建立了基于拉格朗日对偶界和矩形两分法的分枝定界算法,并给出了初步的数值试验结果.  相似文献   

3.
以改进的拉格朗日松弛(Lagrangian relaxation,LR)方法和二次分配问题(quadratic assignment problem,QAP)的线性化模型为基础,给出了求解QAP的拉格朗日松弛新方法,这为有效求解QAP提供了一种新的解决方案.通过求解二次分配基准问题库(QAPLIB)中的实际算例,从实验的角度说明了拉格朗日松弛新方法求解QAP的可行性及存在的不足之处,并对今后进一步的研究工作指明了方向.  相似文献   

4.
求解无容量设施选址问题的半拉格朗日松弛新方法   总被引:1,自引:0,他引:1  
无容量设施选址问题Un-capacitated Facility Location, UFL是应用于诸多领域的经典组合优化难题, 半拉格朗日松弛方法是求解UFL问题的一种精确方法. 分析了半拉格朗日松弛方法在求解UFL问题时所具有的性质, 在此基础上, 对求解UFL问题的半拉格朗日松弛方法进行了一定的理论完善, 并探讨了提高半拉格朗日松弛方法求解性能的有效途径.数值计算结果表明:改进方法具有明显的可行性和有效性.  相似文献   

5.
本文对用无约束极小化方法求解等式约束非线性规划问题的Hestenes-Powell 增广拉格朗日函数作了进一步研究.在适当的条件下,我们建立了Hestenes-Powell增广拉格朗日函数在原问题变量空间上的无约束极小与原约束问题的解之间的关系,并且也给出了Hestenes-Powell增广拉格朗日函数在原问题变量和乘子变量的积空间上的无约束极小与原约束问题的解之间的一个关系.因此,从理论的观点来看,原约束问题的解和对应的拉格朗日乘子值不仅可以用众所周知的乘子法求得,而且可以通过对Hestenes-Powell 增广拉格朗日函数在原问题变量和乘子变量的积空间上执行一个单一的无约束极小化来获得.  相似文献   

6.
张世涛 《运筹与管理》2013,22(2):165-171
本文建立带手数约束和凹交易费的离散投资组合模型,给出求解该模型的一种精确算法。该算法是一个基于拉格朗日松弛和次梯度对偶搜索的分枝定界算法。为测试算法的有效性,用随机产生的数据对模型进行数值实验。作为其应用,用沪深300指数的真实数据实证检验该模型,并与不含交易费用的离散投资组合模型进行数值比较分析。数值分析表明算法能在合理的时间内给出模型的投资组合策略, 对解决中小规模的离散投资组合问题是有效的。  相似文献   

7.
周连第 《计算数学》1979,1(3):264-271
本文讨论用拉格朗日乘子法求解线性等式约束最小二乘问题(简称 LSE 问题)的优点.应用此法能细致地讨论约束条件与变量之间的关系,据此并可证明 LSE 问题与某一个无约束最小二乘问题的等价性.此外,尚可得到参数和拉格朗日乘子的协方差矩阵.最后给出一个数值稳定的解 LSE 问题的算法.  相似文献   

8.
本文提出了离散均值-方差投资组合模型的一种新的精确算法.该算法是一个基于拉格朗日松弛和Bundle对偶搜索的分枝定界算法.我们分别用随机产生的数据和美国股票市场的真实数据进行了数值实验,并与传统次梯度对偶搜索进行了比较,数值结果表明本文提出的算法对解决中小规模的离散投资组合问题是有效的.  相似文献   

9.
解带有二次约束二次规划的一个整体优化方法   总被引:1,自引:0,他引:1  
在本文中,我们提出了一种解带有二次约束二次规划问题(QP)的新算法,这种方法是基于单纯形分枝定界技术,其中包括极小极大问题和线性规划问题作为子问题,利用拉格朗日松弛和投影次梯度方法来确定问题(QP)最优值的下界,在问题(QP)的可行域是n维的条件下,如果这个算法有限步后终止,得到的点必是问题(QP)的整体最优解;否则,该算法产生的点的序列{v^k}的每一个聚点也必是问题(QP)的整体最优解。  相似文献   

10.
基于对称交替方向乘子法(ADMM),结合松弛步技巧,该文提出一种带松弛步的对称ADMM用于求解两分块线性约束非凸优化问题.同时,新算法乘子更新步采用不同的松弛因子.常规假设下,给出新算法子序列的收敛性证明.误差界条件下,分析并获得由新算法产生的迭代点列以线性收敛的速率局部趋于问题稳定点,相应增广拉格朗日函数序列亦线性收敛.最后,初步试验结果表明新算法是有效的.  相似文献   

11.
This paper studies an inventory routing problem (IRP) with split delivery and vehicle fleet size constraint. Due to the complexity of the IRP, it is very difficult to develop an exact algorithm that can solve large scale problems in a reasonable computation time. As an alternative, an approximate approach that can quickly and near-optimally solve the problem is developed based on an approximate model of the problem and Lagrangian relaxation. In the approach, the model is solved by using a Lagrangian relaxation method in which the relaxed problem is decomposed into an inventory problem and a routing problem that are solved by a linear programming algorithm and a minimum cost flow algorithm, respectively, and the dual problem is solved by using the surrogate subgradient method. The solution of the model obtained by the Lagrangian relaxation method is used to construct a near-optimal solution of the IRP by solving a series of assignment problems. Numerical experiments show that the proposed hybrid approach can find a high quality near-optimal solution for the IRP with up to 200 customers in a reasonable computation time.  相似文献   

12.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

13.
We consider a dynamic capacitated plant location problem in which capacities of opened plants are determined by acquisition and/or disposal of multiple types of facilities. We determine the opening schedule of plants, allocations of customers' demands and plans for acquisition and/or disposal of plant capacities that minimise the sum of discounted fixed costs for opening plants, delivery costs of products, and acquisition and operation costs of facilities. The dynamic capacitated plant location problem is formulated as a mixed integer linear program and solved by a heuristic algorithm based on Lagrangian relaxation and a cut and branch algorithm which uses Gomory cuts. Several solution properties of the relaxed problem are found and used to develop efficient solution procedures for the relaxed problem. A subgradient optimisation method is employed to obtain better lower bounds. The heuristic algorithm is tested on randomly generated test problems and results show that the algorithm finds good solutions in a reasonable amount of computation time.  相似文献   

14.
We study a variant of the spanning tree problem where we require that, for a given connected graph, the spanning tree to be found has the minimum number of branch vertices (that is vertices of the tree whose degree is greater than two). We provide four different formulations of the problem and compare different relaxations of them, namely Lagrangian relaxation, continuous relaxation, mixed integer-continuous relaxation. We approach the solution of the Lagrangian dual both by means of a standard subgradient method and an ad-hoc finite ascent algorithm based on updating one multiplier at the time. We provide numerical result comparison of all the considered relaxations on a wide set of benchmark instances. A useful follow-up of tackling the Lagrangian dual is the possibility of getting a feasible solution for the original problem with no extra costs. We evaluate the quality of the resulting upper bound by comparison either with the optimal solution, whenever available, or with the feasible solution provided by some existing heuristic algorithms.  相似文献   

15.
Surrogate Gradient Algorithm for Lagrangian Relaxation   总被引:6,自引:0,他引:6  
The subgradient method is used frequently to optimize dual functions in Lagrangian relaxation for separable integer programming problems. In the method, all subproblems must be solved optimally to obtain a subgradient direction. In this paper, the surrogate subgradient method is developed, where a proper direction can be obtained without solving optimally all the subproblems. In fact, only an approximate optimization of one subproblem is needed to get a proper surrogate subgradient direction, and the directions are smooth for problems of large size. The convergence of the algorithm is proved. Compared with methods that take effort to find better directions, this method can obtain good directions with much less effort and provides a new approach that is especially powerful for problems of very large size.  相似文献   

16.
This paper presents a smoothing heuristic for an NP-hard combinatorial problem. Starting with a convex Lagrangian relaxation, a pathfollowing method is applied to obtain good solutions while gradually transforming the relaxed problem into the original problem formulated with an exact penalty function. Starting points are drawn using different sampling techniques that use randomization and eigenvectors. The dual point that defines the convex relaxation is computed via eigenvalue optimization using subgradient techniques. The proposed method turns out to be competitive with the most recent ones. The idea presented here is generic and can be generalized to all box-constrained problems where convex Lagrangian relaxation can be applied. Furthermore, to the best of our knowledge, this is the first time that a Lagrangian heuristic is combined with pathfollowing techniques. The work was supported by the German Research Foundation (DFG) under grant No 421/2-1.  相似文献   

17.
We investigate the problem of scheduling N jobs on parallel identical machines in J successive stages with finite buffer capacities between consecutive stages in a real-time environment. The objective is to find a schedule that minimizes the sum of weighted completion time of jobs. This problem has proven strongly NP-hard. In this paper, the scheduling problem is formulated as an integer programming model considering buffers as machines with zero processing time. Lagrangian relaxation algorithms are developed combined with a speed-up dynamic programming approach. The complication and time consumption of solving all the subproblems at each iteration in subgradient optimization motivate the development of the surrogate subgradient method, where only one subproblem is minimized at each iteration and an adaptive multiplier update scheme of Lagrangian multipliers is designed. Computational experiments with up to 100 jobs show that the designed surrogate subgradient algorithm provides a better performance as compared to the subgradient algorithm.  相似文献   

18.
We study conditions for convergence of a generalized subgradient algorithm in which a relaxation step is taken in a direction, which is a convex combination of possibly all previously generated subgradients. A simple condition for convergence is given and conditions that guarantee a linear convergence rate are also presented. We show that choosing the steplength parameter and convex combination of subgradients in a certain sense optimally is equivalent to solving a minimum norm quadratic programming problem. It is also shown that if the direction is restricted to be a convex combination of the current subgradient and the previous direction, then an optimal choice of stepsize and direction is equivalent to the Camerini—Fratta—Maffioli modification of the subgradient method.Research supported by the Swedish Research Council for Engineering Sciences (TFR).  相似文献   

19.
Solution oscillations, often caused by identical solutions to the homogeneous subproblems, constitute a severe and inherent disadvantage in applying Lagrangian relaxation based methods to resource scheduling problems with discrete decision variables. In this paper, the solution oscillations caused by homogeneous subproblems in the Lagrangian relaxation framework are identified and analyzed. Based on this analysis, the key idea to alleviate the homogeneous oscillations is to differentiate the homogeneous subproblems. A new algorithm is developed to solve the problem under the Lagrangian relaxation framework. The basic idea is to introduce a second-order penalty term in the Lagrangian. Since the dual cost function is no longer decomposable, a surrogate subgradient is used to update the multiplier at the high level. The homogeneous subproblems are not solved simultaneously, and the oscillations can be avoided or at least alleviated. Convergence proofs and properties of the new dual cost function are presented in the paper. Numerical testing for a short-term generation scheduling problem with two groups of identical units demonstrates that solution oscillations are greatly reduced and thus the generation schedule is significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号