首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a series of effective formulae of the boundary element method is presented. In these formulae, by using a new variable two kernels are only of the weaker singularity of Lnr (where r is the distance between a source point and a field point). Hence, the singularities in the conventional displacement formulation and stress formulation at internal points are reduced respectively so that the "boundary-layer" effect which strongly degenerates the accuracy of stress calculation by using original formulae is eliminated. Also the direct evaluation of coefficients C (boundary tensor), which are difficult to calculate, is avoided. This method is used in elastoplastic analysis. The results of the numerical investigation demonstrate the potential advantages of this method.  相似文献   

2.
A note for analysis of thermo-mechanical contact problems   总被引:2,自引:0,他引:2  
A discussion about the bifurcation and non-uniqueness of solutions in the analysis of thermo-mechanical contact problems with initial gap is given. Without loss of generality, a mechanical contact problem coupled with steady heat transfer is studied and an example of non-uniqueness of solutions caused by the thermo-mechanical mechanism is presented. The important work is that the non-uniqueness of solutions, which is different from that found in the analysis of the traditional frictional contact problems, is studied in detail. The possible oscillation and non-convergence problems in the iteraction process of the numerical computation are discussed, and an enhanced algorithm is put forward to overcome the difficulties. Project sypported by the National Natural Science Foundation of China (Nos. 50178016, 10225212 and 19872016), the National Key Basic Research Special Foundation (No. G1999032805) and the Foundation for University Key Teacher by the Ministry of Education.  相似文献   

3.
In this paper a least-squares formulation associated with a conjugate gradient algorithm is proposed for the solution of transport problems. In this procedure the advection–diffusion equation is first discretized in time using an implicit scheme. At each time step the resulting partial differential equation is replaced by an optimal control problem. This minimization problem involves the minimization of a functional defined via a state equation. This functional is chosen in order to force the numerical solution of the advection–diffusion equation to be equal to the hyperbolic advective part of this equation. The effectiveness of the method is shown through a one-dimensional example involving advective and diffusive transport. No oscillation and high accuracy have been obtained for the entire range of Peclet numbers with a Courant number well in excess of unity.  相似文献   

4.
A new algorithm for the solution of quadratic programming problems is put forward in terms of the mixed energy theory and is further used for the incremental solution of elastic-plastic truss structures. The method proposed is different from the traditional one, for which the unknown variables are selected just in one class such as displacements or stresses. The present method selects the variables in the mixed form with both displacement and stress. As the method is established in the hybrid space, the information found in the previous incremental step can be used for the solution of the present step, making the algorithm highly efficient in the numerical solution process of quadratic programming problems. The results obained in the examples of the elastic-plastic solution of the truss structures verify what has been predicted in the theoretical analysis. Project supported by the National Natural Science Foundation of China (No. 50178916, No. 19732020 and No. 19872016), the National Key Basic Research Special Foundation (No. G1999032805), the Special Funds for Major State Basic Research Projects and the Foundation for University Key Teachers by the Ministry of Education of China.  相似文献   

5.
拉索穹顶结构非线性分析的混合有限元增量法   总被引:10,自引:0,他引:10  
拉索穹顶结构是由受压桅杆和拉索组成的新型柔性大跨度空间组合结构,几何上表现为极强的非线性特性,计算困难,本文应用有限元法,结合拉索穹顶结构特征,假定拉索和桅杆的受力满足虎克宣定律,建立了可以直接考虑拉索垂度影响的两节点索单元模型,并与两节点直杆单元相结合,基于修正的拉格朗日描述方法和虚功原理建立了拉索穹顶结构非线性分析的混合有限元增量方程。采用荷载增量法与Newton-Raphson法相结合的求解  相似文献   

6.
Some new classes of constitutive relations for elastic bodies have been proposed in the literature, wherein the stresses and strains are obtained from implicit constitutive relations. A special case of the above relations corresponds to a class of constitutive equations where the linearized strain tensor is given as a nonlinear function of the stresses. For such constitutive equations we consider the problem of decomposing the stresses into two parts: one corresponds to a time-independent solution of the boundary value problem, plus a small (in comparison with the above) time-dependent stress tensor. The effect of this initial time-independent stress in the propagation of a small wave motion is studied for an infinite medium.  相似文献   

7.
An extension of a previous work concerning the calculation of strain histories along streamlines is made to get more complete and useful expressions of Finger's strain tensor in a cylindrical (or Cartesian) coordinate system as well as in an orthogonal streamline coordinate system. One of the results shows that Winter's tracking model is correct.Relations among the recent three results of Winter, Adachi and Crochet et al. are presented clearly. Moreover useful applications of Frenet-Serret's formula to the study of the deformation and flow kinematics along streamlines are shown in comparison with the ordinary tensor approach.  相似文献   

8.
The buckling and free vibration problems of moderately thick plate are considered in this paper by using the hybrid/mixed finite element model. A modified Reissner principle which only requires C0 continuity is derived. No lockling phenomenon is observed. Linear interpolation is used for all independent unknown function. Finally a displacement generalized eigenvalue equation is obtained, in which the stiffness matrix is symmetric and positively definite. The calculated results show that the method proposed is simple, reliable and satisfactory.  相似文献   

9.
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.  相似文献   

10.
本文利用EBE策略 ̄[1]的基本思想,给出一类有限元结构分析的EBE计算方法,即EBE共轭梯度法EBE-CG和EBE预处理共轭梯度法EBE-PCG,这类方法避免了传统有限元结构分析中总刚度阵的组集而可大大降低存储量要求。同时它们还特别适合在各种粒度下的多处理机系统上实现。初步数值试验结果表明:这类EBE有限元结构分析方法对串行和并行计算都是很有效的。  相似文献   

11.
A sharp interface problem arising in the flow of two immiscible fluids, slag and molten metal in a blast furnace, is formulated using a two-dimensional model and solved numerically. This problem is a transient two-phase free or moving boundary problem, the slag surface and the slag–metal interface being the free boundaries. At each time step the hydraulic potential of each fluid satisfies the Laplace equation which is solved by the finite element method. The ordinary differential equations determining the motion of the free boundaries are treated using an implicit time-stepping scheme. The systems of linear equations obtained by discretization of the Laplace equations and the equations of motion of the free boundaries are incorporated into a large system of linear equations. At each time step the hydraulic potential in the interior domain and its derivatives on the free boundaries are obtained simultaneously by solving this linear system of equations. In addition, this solution directly gives the shape of the free boundaries at the next time step. The implicit scheme mentioned above enables us to get the solution without handling normal derivatives, which results in a good numerical solution of the present problem. A numerical example that simulates the flow in a blast furnace is given.  相似文献   

12.
Using a non‐conforming C0‐interior penalty method and the Galerkin least‐square approach, we develop a continuous–discontinuous Galerkin finite element method for discretizing fourth‐order incompressible flow problems. The formulation is weakly coercive for spaces that fail to satisfy the inf‐sup condition and consider discontinuous basis functions for the pressure field. We consider the results of a stability analysis through a lemma which indicates that there exists an optimal or quasi‐optimal least‐square stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, and on the geometry of the finite element in the mesh. We provide several numerical experiments illustrating such dependence, as well as the robustness of the method to deal with arbitrary basis functions for velocity and pressure, and the ability to stabilize large pressure gradients. We believe the results provided in this paper contribute for establishing a paradigm for future studies of the parameter of the Galerkin least square method for second‐gradient theory of incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
将不规则区域嵌入到规则的矩形区域,在矩形区域上将弹性平面问题的控制方程采用重心Lagrange插值离散,得到控制方程矩阵形式的离散表达式。在边界节点上利用重心插值离散边界条件,规则区域采用置换法施加边界条件,不规则区域采用附加法施加边界条件,得到求解平面弹性问题的过约束线性代数方程组,采用最小二乘法进行求解,得到整个规则区域上的位移数值解。利用重心插值计算得到不规则区域内任意节点的位移值,计算精度可到10-14以上。数值算例验证了所建立方法的有效性和计算精度。  相似文献   

14.
IntroductionTherearemanystructuresinengineering,whicharenotaxi_symmetric,butcyclicallysymmetric,orcalledrotationallyperiodic,...  相似文献   

15.
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.  相似文献   

16.
构造了一种适合边界元分析裂纹问题的三角形单元,该单元中的形函数包含两部分,主要部分用于捕捉裂纹尖端上位移分布的陡峭特性(性质),另一部分为常规的拟合函数,体现裂纹尖端位置附近的物理量在其他方向上的连续分布。形函数主要部分的构造充分利用了已有理论研究获得的结论,在裂纹表面,随着距离远离尖端,位移分布与■函数保持同阶变化。在传统形函数的基础上,通过先乘以一项同阶于■的变量项,再在系数中将其在形函数所在点上的值除去,便得到新型的用于拟合裂纹尖端附近位移和面力分布的形函数。新的形函数能够满足形函数的delta性质,但归一性不再满足,因此,新的形函数只用于物理量的拟合,而几何量的拟合依然采用传统方案。通过对偶边界元方法计算裂纹尖端的张开位移后,利用一种位移外插方法计算获得应力强度因子。数值算例关注了一种无限域内的圆盘裂纹,应用新构造的三角形单元于对偶边界元中计算结构在受到斜拉力时裂纹尖端的三种应力强度因子。通过与参考解进行对比,验证了该插值方案用于对偶边界元分析裂纹问题时的正确性和高精度。  相似文献   

17.
A stabilized finite element method, to carry out the linear stability analysis of a two‐dimensional base flow to three‐dimensional perturbations that are periodic along span, is presented. The resulting equations for the time evolution of the disturbance requires a solution to the generalized eigenvalue problem. The analysis is global in nature and is also applicable to non‐parallel flows. Equal‐order‐interpolation functions for velocity and pressure are utilized. Stabilization terms are added to the Galerkin formulation to admit the use of equal‐order‐interpolation functions and to eliminate node‐to‐node oscillations that might arise in advection‐dominated flows. The proposed formulation is tested on two flow problems. First, the mode transitions in the circular Couette flow are investigated. Two scenarios are considered. In the first one, the outer cylinder is at rest, while the inner one spins. Two linearly unstable modes are identified. The primary mode is real and represents the axisymmetric Taylor vortices. The second mode is complex and consists of spiral vortices. For the counter‐rotating cylinders, the primary transition is via the appearance of spiral vortices. Excellent agreement with results from earlier studies is observed. The formulation is also utilized to investigate the parallel and oblique modes of vortex shedding past a cylinder for the Re = 100 flow. It is found that the flow is associated with a large number of unstable oblique shedding modes. The parallel mode of vortex shedding is a special case of this family of modes and is associated with the largest growth rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Three localisation rules, TFA, the incremental tangent, and the affine method, are recalled and evaluated in the context of the elastoplastic micromechanical analysis of heterogeneous materials, composites or polycrystals. With the help of a severe example, it is shown how methods based on the complete anisotropic elastoplastic tangent operator yield very stiff predictions which are far from the reference solution; the same conclusion holds for the method using the elastic accommodation rule. On the other hand, using an isotropic form of the tangent operator delivers much better responses. The reasons for such differences are discussed, together with possible justifications for the choice of the isotropic form. To cite this article: J.-L. Chaboche, P. Kanouté, C. R. Mecanique 331 (2003).  相似文献   

19.
Discrete particle simulation is a well‐established tool for the simulation of particles and droplets suspended in turbulent flows of academic and industrial applications. The study of some properties such as the preferential concentration of inertial particles in regions of high shear and low vorticity requires the computation of autocorrelation functions. This can be a tedious task as the discrete point particles need to be projected in some manner to obtain the continuous autocorrelation functions. Projection of particle properties on to a computational grid, for instance, the grid of the carrier phase, is furthermore an issue when quantities such as particle concentrations are to be computed or source terms between the carrier phase and the particles are exchanged. The errors committed by commonly used projection methods are often unknown and are difficult to analyse. Grid and sampling size limit the possibilities in terms of precision per computational cost. Here, we present a spectral projection method that is not affected by sampling issues and addresses all of the above issues. The technique is only limited by computational resources and is easy to parallelize. The only visible drawback is the limitation to simple geometries and therefore limited to academic applications. The spectral projection method consists of a discrete Fourier‐transform of the particle locations. The Fourier‐transformed particle number density and momentum fields can then be used to compute the autocorrelation functions and the continuous physical space fields for the evaluation of the projection methods error. The number of Fourier components used to discretize the projector kernel can be chosen such that the corresponding characteristic length scale is as small as needed. This allows to study the phenomena of particle motion, for example, in a region of preferential concentration that may be smaller than the cell size of the carrier phase grid. The precision of the spectral projection method depends, therefore, only on the number of Fourier modes considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A finite element algorithm is presented for simultaneous calculation of the steady state, axisymmetric flows and the crystal, melt/crystal and melt/ambient interface shapes in the Czochralski technique for crystal growth from the melt. The analysis is based on mixed Lagrangian finite element approximations to the velocity, temperature and pressure fields and isoparametric approximations to the interface shape. Galerkin's method is used to reduce the problem to a non-linear algebraic set, which is solved by Newton's method. Sample solutions are reported for the thermophysical properties appropriate for silicon, a low-Prandtl-number semiconductor, and for GGG, a high–Prandtl–number oxide material. The algorithm is capable of computing solutions for both materials at realistic values of the Grashof number, and the calculations are convergent with mesh refinement. Flow transitions and interface shapes are calculated as a function of increasing flow intensity and compared for the two material systems. The flow pattern near the melt/gas/crystal tri-junction has the asymptotic form predicted by an inertialess analysis assuming the meniscus and solidification interfaces are fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号