首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seiches are long-period standing waves with a unique period called a natural resonant period, during which the phenomenon of resonance occurs. The occurrence of resonance in coastal areas can cause destruction to surrounding natural and man-made structures. By determining the resonant period of a given basin, we can pinpoint the conditions that allow waves to achieve resonance. In this study, a mathematical model is developed from the shallow water equations to examine seiches and resonances in various types of closed basin. The developed model is solved analytically using the separation of variables method to determine the seiches' fundamental resonant periods. Comparisons between the analytical solutions and experimental measurements for resonant periods are also provided. It is shown that the analytical resonant period confirms the experimental data for closed basin of various geometric profiles. Using a finite volume method on a staggered grid, the model is solved numerically to simulate the wave profile when resonance phenomenon occurs. Through those numerical simulations, we also obtain the fundamental resonant period for each basin which agrees with the derived analytical period.  相似文献   

2.
A high‐order Petrov–Galerkin finite element scheme is presented to solve the one‐dimensional depth‐integrated classical Boussinesq equations for weakly non‐linear and weakly dispersive waves. Finite elements are used both in the space and the time domains. The shape functions are bilinear in space–time, whereas the weighting functions are linear in space and quadratic in time, with C0‐continuity. Dispersion correction and a highly selective dissipation mechanism are introduced through additional streamline upwind terms in the weighting functions. An implicit, conditionally stable, one‐step predictor–corrector time integration scheme results. The accuracy and stability of the non‐linear discrete equations are investigated by means of a local Taylor series expansion. A linear spectral analysis is used for the full characterization of the predictor–corrector inner iterations. Based on the order of the analytical terms of the Boussinesq model and on the order of the numerical discretization, it is concluded that the scheme is fourth‐order accurate in terms of phase velocity. The dissipation term is third order only affecting the shortest wavelengths. A numerical convergence analysis showed a second‐order convergence rate in terms of both element size and time step. Four numerical experiments are addressed and their results are compared with analytical solutions or experimental data available in the literature: the propagation of a solitary wave, the oscillation of a flat bottom closed basin, the oscillation of a non‐flat bottom closed basin, and the propagation of a periodic wave over a submerged bar. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
正六边形及其扩展形状港湾内的水波共振   总被引:2,自引:0,他引:2  
港口的几何形状是影响港湾共振的重要因素。本文从理论上推导了正六边形封闭港湾内各共振参数的解析表达式,并采用Boussinesq模型模拟了正六边形及其扩展形状港湾内的水波共振现象,验证了提出的理论,并进一步研究了各共振模态的空间能量分布特征。结果表明,变正六边形的一边为曲线后,港内水波能量分布更加集中于有限的共振模态上,不利于改善其内水波共振。  相似文献   

4.
应用平面二维悬沙数学模型对方柱尾流区的泥沙输运及床面调整进行了数值模拟,并对重要物理参数做了分析说明。数值计算采用时间分裂一全隐式有限差分格式,流场的计算基于沿水深平均的RANS方程。通过系统的数值模拟,揭示了不同来流情况下,方柱尾流区的流态变化,及与之相应的床面变化规律,并对不同流态下的泥沙运动作了分析。计算结果表明在方柱尾流区,不同的流场流态对尾流区的床面调整有明显影响。流场较弱的情况下,尾流区中湍动强度相应较弱,此时悬浮泥沙由于流速减小而普遍落淤,床面应力的减小也致使床面冲刷量减小。随着流场强度的逐渐增大,尾流区中湍动强度相应增强,床面应力增大,同时湍流的强烈交换作用增强了对泥沙的输运作用,床面变化不再是简单的淤积状态,部分区域出现了冲刷。  相似文献   

5.
Shallow water models are widely used to describe and study free‐surface water flow. While in some practical applications the bottom friction does not have much influence on the solutions, there are still many applications, where the bottom friction is important. In particular, the friction terms will play a significant role when the depth of the water is very small. In this paper, we study shallow water equations with friction terms and develop a semi‐discrete second‐order central‐upwind scheme that is capable of exactly preserving physically relevant steady states and maintaining the positivity of the water depth. The presence of the friction terms increases the level of complexity in numerical simulations as the underlying semi‐discrete system becomes stiff when the water depth is small. We therefore implement an efficient semi‐implicit Runge‐Kutta time integration method that sustains the well‐balanced and sign preserving properties of the semi‐discrete scheme. We test the designed method on a number of one‐dimensional and two‐dimensional examples that demonstrate robustness and high resolution of the proposed numerical approach. The data in the last numerical example correspond to the laboratory experiments reported in [L. Cea, M. Garrido, and J. Puertas, Journal of Hydrology, 382 (2010), pp. 88–102], designed to mimic the rain water drainage in urban areas containing houses. Since the rain water depth is typically several orders of magnitude smaller than the height of the houses, we develop a special technique, which helps to achieve a remarkable agreement between the numerical and experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A new numerical scheme of a “non-reflection and free-transmission” boundary for longwave equations proposed by Hino (1987) has been tested for a variety of cases. The test results verify the effectiveness of the method for (a) a single progressive wave train on a horizontal bottom, (b) two wave trains each propagating in opposite directions on a horizontal bottom, (c) a single wave train propagating on a sloping bottom with friction, (d) oscillatory flood waves in an open channel flow, (e) two-dimensional waves travelling obliquely to open boundaries and (f) water surface oscillation in a harbor by waves incident through an opening.  相似文献   

7.
Skin friction drag is much greater in turbulent flows as compared with that in laminar flows. It is well known that traveling wave control can be used to achieve a large drag reduction. In the present study, a direct numerical simulation of a turbulent pipe flow was performed to clarify the mechanism of the drag reduction caused by the traveling wave control. The flow induced by the control was evaluated using pathline analysis. Near the wall, a “closed flow” was formed, wherein the injected particles return to the wall owing to the suction flow. The random component of Reynolds shear stress was perfectly suppressed in the closed flow, which suggests that there was no turbulence. The controlled flow was categorized into four patterns, and each flow characteristic and drag reduction effect was discussed. When the closing rate is high, the drag decreases, while when the closing rate is low, i.e., when the injected particles are released into the main flow, the turbulence is maintained. If the thickness of the layer suppressing turbulence is insufficient, a significant effect in terms of the drag reduction cannot be expected. The large drag reduction owing to the traveling wave control can be attributed to the elimination of turbulence in the region near the wall.  相似文献   

8.
In this paper, a certain kind of intermittent scheme is used to control the chaos in a single chaotic Chua circuit to reach an arbitrary orbit. Furthermore, it is confirmed to be effective in suppressing spatiotemporal chaos and a spiral wave in the networks of Chua circuits with nearest-neighbor connections. The controllable and measurable variable is sampled, and the linear error between the sampled variable and the selected thresholds is fed back into the system only if the sampled variable exceeds the thresholds; otherwise, the system will develop itself without any external perturbation. In experiments, the control scheme could be realized by using the Heavside function. In the case of one single chaotic Chua circuit, the chaotic state can be controlled to reach an arbitrary n-periodical orbit (n=1,2,3,5,6,…) with appropriate feedback intensity and thresholds. It is argued that this scheme could explain the mechanism of what is called phase compression. Then the phase compression scheme is used to control a spiral wave and spatiotemporal chaos in a network of Chua circuits with 256×256 sites. The numerical simulation results confirm its effectiveness when appropriate upper and bottom thresholds are used by monitoring the measurable output voltages of the chaotic circuit in one site of the network.  相似文献   

9.
A numerical scheme based on the staggered finite volume method is presented at the aim of studying surface waves generated by a bottom motion. We address the 2D Euler equations in which the vertical domain is resolved only by one layer. The resulting non-hydrostatic scheme is used to simulate surface waves generated by bottom motion in a water tank. Here we mimic Hammack experiments numerically, in which a bed section is moved upwards or downwards, resulting in transient dispersive waves. For an impulsive downward bottom thrust, free surface responds in terms of a negative leading wave, followed with dispersive train of waves. For an upward bottom thrust, amplitude of the leading wave decays as the wave propagates, and no wave of permanent form evolves— instead, there appears a train of solitons. In this article, we show that our numerical scheme can produce the correct wave profiles, comparable with the analytical and experimental results of Hammack. Simulations using intermediate and slow bottom motions are also presented. In addition, we perform a simulation of a wave generated by submerged landslide, that compares well against previous numerical simulations. Via this simulation, we demonstrate that our scheme can incorporate a moving wet–dry boundary algorithm in the run-up simulation.  相似文献   

10.
基于二维Euler方程,结合五阶加权基本无振荡(weighted essentially nonoscillatory,WENO)格式以及自适应网格加密(adaptive mesh refinement,AMR)技术对入射激波在矩形凹槽管道内传播过程进行了数值模拟。数值结果清晰地显示了入射激波传播过程中与多个矩形凹槽作用以及在凹槽内变化的整个过程,且与已有的实验结果吻合较好。另外,结果还揭示了入射激波与单个凹槽作用时,会发生绕射产生膨胀波,还会发生碰撞从而诱导反射激波。膨胀波会导致入射激波压力降低,而反射激波则导致其升高,但膨胀波的影响占主导作用,因而入射激波波阵面强度出现振荡下降。  相似文献   

11.
In a two-dimensional shear flow of shallow water, the bottom friction relates uniquely the spanwise profile of the depth-averaged velocity to the bottom topography. If the basic flow varies weakly in the spanwise direction, the local analysis of stability at every spanwise position gives the region of the flow parameters for which the classic hydraulic instability due to the bottom friction cannot occur. In this region, the linear analyses of the waves scattering and instability due to the lateral shear can be performed effectively by means of the frictionless linearized equations if both the bottom slope and friction are equally small.The energy of the total perturbed flow can be split into three main parts that correspond to the basic flow, small amplitude wave motion and induced mean flow. The waves can be either amplified or damped near the critical layers, where their streamwise phase velocity equals the velocity of the basic flow. Two physical mechanisms of this amplification exist. The first one is similar to that suggested by Takehiro and Hayashi for a linear frictionless shallow water flow. The incident and transmitted waves carry energy of opposite signs, which results in an increase in the amplitude of the reflected wave compared to that of the incident one. This mechanism of over-reflection operates for any combination of the flow parameters. The other mechanism is similar to Landau damping in plasma flows; it is related to the energy exchange between the waves and fluid particles at the critical layers due to the velocity synchronism. It may lead to either additional amplification or damping of the waves for different flow conditions. In particular, its significance can be reduced by stronger bottom friction. If the basic flow has uniform potential vorticity, Landau damping is negligible, and over-reflection always occurs. If the feed-back is provided by another critical layer, the net over-reflection results in the formation of trapped modes.  相似文献   

12.
基于LS-DYNA软件中的ALE算法,对近水面水下爆炸气泡脉动过程进行数值模拟并与实验结果进行对比,验证了近水面近壁面混合边界有限元模型和参数设置的正确性。设置不同爆炸工况,对气泡及其破碎兴波对浮动冲击平台影响进行探究,结果表明:在水下爆炸过程中,气泡、自由面、浮动冲击平台会发生强烈的耦合作用,在气泡脉动阶段,气泡会诱导出涌流和水冢效应,影响浮动冲击平台的安全性和使用性;冲击波是影响浮动冲击平台冲击环境的主要因素,由于气泡的低频性,气泡脉动及水冢对浮动冲击平台的直接冲击作用,会小幅度增加浮动冲击平台冲击环境的谱速度值、谱位移值,对谱加速度值几乎无影响;水冢抨击水面所形成的波浪和气泡破碎兴波,对浮动冲击平台造成的激励载荷呈周期性,其周期与波浪周期相同。波浪的激励载荷仅通过激励其对应频率的浮动冲击平台共振来改变平台的冲击环境。波浪载荷很小,对浮动冲击平台的冲击环境影响较小。  相似文献   

13.
This paper investigates the transmission and propagation of two-dimensional (2D) time-harmonic plane waves in periodically multilayered elastic composites with a strip-like crack. The total wave field in the composite structure is represented as a sum of the incident wave field determined by the transfer matrix method and the scattered wave field described by integral representations in terms of the Green’s matrices and the crack-opening-displacements. A numerical scheme is developed to compute the wave propagation characteristics and the crack-characterizing quantities. The effects of the crack location and size as well as the angle of wave incidence are investigated using the averaged crack-opening-displacements and the stress intensity factors. Special attention of the paper is devoted to resonance wave motion and wave localization phenomena in a stack of periodical elastic layers weakened by a single strip-like crack. Numerical results are presented and discussed to reveal the usual and the resonant wave transmission by using the power-density vector and the energy streamlines in the vicinity of the crack. Wave localization due to interior and interface cracks is analyzed by considering the energy captured by a crack, and resonance induced crack growth is also discussed.  相似文献   

14.
15.
It is shown that the parameters in a two-dimensional (depth-averaged) numerical tidal model can be estimated accurately by assimilation of data from tide gauges. The tidal model considered is a semi-linearized one in which kinematical non-linearities are neglected but non-linear bottom friction is included. The parameters to be estimated (bottom friction coefficient and water depth) are assumed to be position-dependent and are approximated by piecewise linear interpolations between certain nodal values. The numerical scheme consists of a two-level leapfrog method. The adjoint scheme is constructed on the assumption that a certain norm of the difference between computed and observed elevations at the tide gauges should be minimized. It is shown that a satisfactory numerical minimization can be completed using either the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm or Nash's truncated Newton algorithm. On the basis of a number of test problems, it is shown that very effective estimation of the nodal values of the parameters can be achieved provided the number of data stations is sufficiently large in relation to the number of nodes.  相似文献   

16.
In this paper, experimental and numerical studies were performed to investigate the characteristics of longshore current under two mild slopes, the results of which may complement the existing studies, which have mainly focused on steep slopes. The experimental results revealed that the average velocity distribution of the longshore current was significantly different under the two different mild slopes. Under the slope of 1:100, the distribution of the averaged longshore current velocity had a downward concave trend at the nearshore side, while under the slope of 1:40 the trend became convex. In addition, the analysis of the numerical results showed that the distribution of the averaged longshore current velocity was affected by the distribution of the wave height within the surf zone and the bottom friction equations, with the influence of the latter being more significant. For the slope of 1:100, the cross-shore variability of alongshore variability can be calculated using the flow-type bottom friction equation, while for the slope of 1:40, the wave-type bottom friction equation can be used instead. Finally, the secondary breaking wave heights for mild slopes and the distribution of wave set-up are also shown in the study.  相似文献   

17.
牛江川  张婉洁  申永军  王军 《力学学报》2022,54(4):1092-1101
利用增量平均法研究了复合干摩擦阻尼器的准零刚度非线性隔振系统在外部简谐激励作用下的1/3次亚谐共振. 首先利用平均法得到了复合干摩擦的准零刚度隔振系统的主共振近似解析解, 然后在系统主共振近似解析解的基础上将系统的亚谐共振响应看作增量, 并利用平均法得到了准零刚度隔振系统的亚谐共振近似解析解. 利用李雅普诺夫方法得到了准零刚度隔振系统主共振和亚谐共振稳态解的稳定性条件, 并推导了系统1/3次亚谐共振的存在条件. 根据近似解析解分别得到了复合干摩擦的准零刚度隔振系统的主共振和亚谐共振力传递率. 利用数值解验证了准零刚度隔振系统主共振和亚谐共振近似解析解的准确性. 利用系统的近似解析解详细分析了准零刚度参数和干摩擦力对系统主共振和亚谐共振的幅频响应以及力传递特性的影响. 分析结果表明, 通过选取合适的干摩擦力参数, 可以消除准零刚度隔振系统在主共振区域的亚谐共振. 通过复合干摩擦阻尼器不但可以提高准零刚度隔振系统在低频区域的振幅抑制效果, 而且可以降低准零刚度隔振系统的起始隔振频率, 但是会增大系统在有效隔振频带内的力传递率.   相似文献   

18.
The process of generation of three-dimensional irrotational fluid motions induced by small local finite-duration displacements of part of the bottom of a basin is considered within the framework of wave linear theory for a basin of constant depth. The solution of the problem and an expression for the total wave field energy are obtained using integral transforms. The general properties of the process of unsteady wave generation induced by short-term and slow deformations of the bottom are analyzed. Within the framework of the piston generation model the energy characteristics of axisymmetric waves are compared for two time laws of bottom deformation of identical duration. In general, it is shown that under certain conditions the nature and intensity of the wave process depend on both the time law and the duration of the deformation process.Sevastopol. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 151–156, March–April, 1996.  相似文献   

19.
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.  相似文献   

20.
泡沫材料对冲击波的衰减特性   总被引:1,自引:0,他引:1  
周佩杰  王坚  陶钢  周杰 《爆炸与冲击》2015,35(5):675-681
对冲击波与开式、闭式泡沫作用及其在空气中的传播特性开展实验研究,探讨不同结构的泡沫材料对冲击波衰减的力学特征。通过定量分析泡沫材料对冲击波的超压峰值、正冲量的损失,分析冲击波入射、反射、透射的正冲量。实验结果表明, 泡沫材料对冲击波的衰减体现在对冲击波的反射衰减等方面,其中开式泡沫对冲击波的衰减效果比闭式泡沫稍好,且它们衰减冲击波的具体力学过程也不尽相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号