首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evans MJ  Webster JR  Cawley P 《Ultrasonics》2000,37(8):589-594
The use of conical piezoelectric transducers as point acoustic sources has been investigated. It has been shown that transducers based on a design originally developed at the National Institute for Standards and Technology in the USA can be used as point transmitters over the frequency range of interest in acoustic emission measurements (100 kHz to around 1 MHz). They should, therefore, be suitable for use in experiments to calibrate structures so that acoustic emission source strengths can be determined. It has also been shown that measurements of the response of the transmitting transducer backing can be used to assess the coupling efficiency, and hence to remove concerns about inconsistent coupling affecting the calibration measurements. The results indicate that the variation of the backing response with coupling is due to a shift in the resonance frequencies of the transducer with the mechanical load impedance. If other transducers can be shown to behave in a similar fashion this effect could be used to measure coupling in standard acoustic emission and ultrasonic transducers.  相似文献   

2.
何正耀  马远良 《中国物理 B》2011,20(8):84301-084301
The acoustic radiation characteristics of free-flooded ring transducers made of PZT4 and PMN-PT materials are calculated and compared.First,the theoretical formulae for free-flooded ring transducers are studied.The resonant frequencies of a transducer made of PZT4 and PMN-PT materials are calculated.Then,the transmitting voltage responses of the free-flooded ring transducers are calculated using the finite element method.Finally,the acoustic radiation characteristics of the free-flooded ring transducers are calculated using the boundary element method.The calculated results show that the resonant frequencies of the free-flooded ring transducer made of PMN-PT are greatly reduced compared with those made of PZT4 with the same size.The transmitting voltage response of the transducer made of PMN-PT is much higher than that of the transducer made of PZT4.The calculated 3-dB beamwidth of the acoustic radiated far-field directivity of the free-flooded ring transducer made of PZT4 at the resonant frequency 1900 Hz is 63.6 and that of the transducer made of PMN-PT at the resonant frequency 1000 Hz is 64.6.The comparison results show that the free-flooded ring transducer made of PMN-PT material has many advantages over that made of PZT4.The PMN-PT is a promising material for improving the performance of free-flooded ring transducers.  相似文献   

3.
This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5 MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers.  相似文献   

4.
Richard C  Lee HS  Guyomar D 《Ultrasonics》2004,42(1-9):417-424
This paper deals with the emission performance of 1-3 piezoelectric composite power transducers made with a hard PZT (Navy III) and epoxy resins with a high glass-rubber transition temperature. Following the "dice and fill" technique, various composite transducers with 30 and 50% PZT volume fractions were fabricated with an air backing and no front matching layer with resonance operating frequencies around 500 kHz. The transducers were first evaluated under isothermal conditions, with a low emission duty cycle. Efficiencies as high as 95% were monitored as a function of the instantaneous input power up to a 60 W/cm(2) density. The effect of the polymer matrix mechanical losses and the fabrication conditions is then discussed. For the transducer thermal stability, the case of long duty cycle or continuous emission was considered in a second evaluation. In this case the transducer working temperature and axial radiated pressure were monitored as functions of the input power density up to 40 W/cm(2). It is shown that the transducer efficiency and working temperature were strongly dependent on the type of resin used but also on the PZT material, even for hard PZT compositions. A composite transducer configuration with strongly improved thermal stability was investigated demonstrating a working temperature higher than 90 degrees C and an extended power range (30-40 W/cm(2)). The composite thermal breakdown mechanism was analyzed and the effect of the curing-induced thermo-mechanical stresses on the PZT mechanical losses was considered in relation to the composite working temperature. Measurements of the composite mechanical losses versus the temperature were obtained and related to the variation of the PZT mechanical losses with the stresses due to the composite transducer temperature change. It is found that the thermally induced stress can strongly influence the PZT ceramic mechanical losses and that it can be the reason for a thermal breakdown taking place at a temperature much lower than the epoxy resin transition.  相似文献   

5.
Saffar S  Abdullah A 《Ultrasonics》2012,52(1):169-185
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5 MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).  相似文献   

6.
Yan T  Theobald P  Jones BE 《Ultrasonics》2004,42(1-9):431-438
The experimental results of a conical piezoelectric transducer with integral backing sensor as a self-calibrating simulated acoustic emission (SAE) energy source are presented. It has been shown that there is a negative linear relationship between the energy of SAE signal detected by the backing sensor and the relative strength (signal energy) of SAE source in the structure detected by a reference sensor under different transducer-to-structure coupling efficiencies, with AC drives of the same wave packet, frequency and peak amplitude to excite the conical transducer as a SAE source at all the investigated frequencies over the frequency range of interest in AE measurements (nominally from 50 kHz to around 1 MHz). This should enable the relative strength of the SAE source in a structure to be determined using the SAE measurement from the backing sensor for the selected electrical inputs to the conical transducer, and hence to remove the concerns about inconsistent transducer-to-structure coupling affecting the relative strength of the SAE source for calibration.  相似文献   

7.
Richard C  Goujon L  Guyomar D  Lee HS  Grange G 《Ultrasonics》2002,40(1-8):895-901
1.3 PZT-polymer composites were fabricated using the dice and fill method with various PZT types and volume fractions. These composites were evaluated for power underwater transducer applications with an air backed and no matching layer configuration. Electrical input and acoustical output powers were monitored as a function of the drive level. Total acoustic power densities of 30 W/cm2 were obtained with a P189/epoxy piezocomposite vibrating at 350 kHz with a low duty cycle (1-5%) and with a 90% efficiency. Power densities up to 20 W/cm2 were measured with a 50% duty cycle. Evolution and destruction of the transducers were monitored versus increasing averaged power. It was observed that better efficiencies were obtained with low volume fraction configurations allowing natural acoustic impedance matching to water. It was found that hard PZT type (Navy III) are optimal compositions even for piezocomposite transducers. It is shown that, unlike a common belief, the polymer mechanical losses are comparable to those of the active ceramic justifying that 1.3 piezocomposites are suited for low-cost power applications. In fact, the main limitation induced by the polymer phase is a strong thermal breakdown when the temperature of the transducer approaches the glass transition region of the polymer. Measurements of the polymer losses as a function of the temperature were obtained confirming this point and offering interesting new alternatives for future composite power transducers.  相似文献   

8.
Summary The theory of piezoelectric transducer vibrations, which may be treated as onedimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receivers.  相似文献   

9.
This work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.  相似文献   

10.
Solidly mounted integrated transducers with a Bragg cell inserted between the piezoelectric film and the substrate are investigated for high frequency ultrasonic applications. A numerically stable recursive one dimensional transmission/reflection model was used to analyze the behavior of the periodic structure. This theoretical analysis includes the study of the influence of the acoustic properties of the constitutive layer, the effect of the number of cells and their arrangement. A 35 MHz integrated transducer consisting in a PZT ceramic laid down on a Au/PZT Bragg cell deposited on a porous substrate was fabricated and characterized. Both theoretical and experimental results highlight the interest of using a periodic structure for high frequency ultrasonic applications.  相似文献   

11.
The major problem in the production process of efficient ultrasonic transducer is the preparation of defect-free PZT fibres. A considerable amount of empirical work is presently in progress to achieve this goal of special importance for high-sensitive transducers. However, there is a lack of basic research on the detection of residual stress and defects areas in these fibres due to difficulties in mechanical examination of such flexible elements. This work presents use of the nanoindenter for material characterisation of PZT fibres of 140 µm radius obtained by extrusion method. The sudden depth-excursions during indentation on the edge of fibres have been clarified using Piezoresponse Mode Atomic Force Microscopy method and XRD measurements. The nanoindentation method proves to be the efficient tool capable to detect contribution of defects along the radius, properly estimate hardness as well as corresponding Young's modulus and concluding on structural properties of the micrometre-range ceramics fibres.  相似文献   

12.
Eccardt PC  Niederer K 《Ultrasonics》2000,38(1-8):774-780
For medical high frequency acoustic imaging purposes the reduction in size of a single transducer element for one-dimensional and even more for two-dimensional arrays is more and more limited by fabrication and cabling technology. In the fields of industrial distance measurement and simple object recognition low cost phased arrays are lacking. Both problems can be solved with micromachined ultrasound transducers (MUTs). A single transducer is made of a large number of microscopic elements. Because of the array structure of these transducers, groups of elements can be built up and used as a phased array. By integrating parts of the sensor electronics on chip, the cabling effort for arrays can be reduced markedly. In contrast to standard ultrasonic technology, which is based on massive thickness resonators, vibrating membranes are the radiating elements of the MUTs. New micromachining technologies have emerged, allowing a highly reproducible fabrication of electrostatically driven membranes with gap heights below 500 nm. A microelectronic BiCMOS process was extended for surface micromechanics (T. Scheiter et al., Proceedings 11th European Conference on Solid-State Transducers, Warsaw, Vol. 3, 1997, pp. 1595-1598). Additional process steps were included for the realization of the membranes which form sealed cavities with the underlying substrate. Membrane and substrate are the opposite electrodes of a capacitive transducer. The transducers can be integrated monolithically on one chip together with the driving, preamplifying and multiplexing circuitry, thus reducing parasitic capacities and noise level significantly. Owing to their low mass the transducers are very well matched to fluid loads, resulting in a very high bandwidth of 50-100% (C. Eccardt et al., Proceedings Ultrasonics Symposium, San Antonio, Vol. 2, 1996, pp. 959-962; P.C. Eccardt et al., Proceedings of the 1997 Ultrasonics Symposium, Toronto, Vol. 2, 1997, pp. 1609-1618). In the following it is shown how the BiCMOS process has been modified to meet the demands for ultrasound generation and reception. Bias and driving voltages have been reduced down to the 10 V range. The electromechanical coupling is now almost comparable with that for piezoelectric transducers. The measurements exhibit sound pressures and bandwidths that are at least comparable with those of conventional piezoelectric transducer arrays.  相似文献   

13.
The relative performance of several types of ultrasonic transducer are assessed using reproducible acoustic transients generated from Q-switched Nd:YAG laser pulses incident on an aluminium alloy sample. A laser interferometer, a capacitance transducer, two types of electromagnetic acoustic transducers (EMATs), and a broad-band piezoelectric transducer are examined as detectors. The comparison includes a study of their rise-times, and typical signal-to-noise ratios. In the case of the interferometer and capacitance transducer, displacement measurements are shown to be highly consistent with theory.  相似文献   

14.
The acoustic emission signals resulting from a small extension of an existing crack in a body under tensile stress are calculated using a particular model of the crack extension event. The dependence of the signal on the duration of the event is evaluated; and it is shown that the signal strength depends markedly on the position and characteristics of the transducer and on the crack orientation.Simultaneous measurements with an array of transducers on the surface of the specimen could therefore provide additional information about the nature of the crack extension event.  相似文献   

15.
Conventional ultrasound transducers used for medical diagnosis generally consist of linearly aligned rectangular apertures with elements that are focused in one plane. While traditional beamforming is easily accomplished with such transducers, the development of quantitative, physics-based imaging methods, such as tomography, requires an accurate, and computationally efficient, model of the field radiated by the transducer. The field can be expressed in terms of the Helmholtz-Kirchhoff integral; however, its direct numerical evaluation is a computationally intensive task. Here, a fast semianalytical method based on Stepanishen's spatial impulse response formulation [J. Acoust. Soc. Am. 49, 1627-1638 (1971)] is developed to compute the acoustic field of a rectangular element of cylindrically concave transducers in a homogeneous medium. The pressure field, for, lossless and attenuating media, is expressed as a superposition of Bessel functions, which can be evaluated rapidly. In particular, the coefficients of the Bessel series are frequency independent and need only be evaluated once for a given transducer. A speed up of two orders of magnitude is obtained compared to an optimized direct numerical integration. The numerical results are compared with Field II and the Fresnel approximation.  相似文献   

16.
Ultrasonic transducers made with 1-3 connectivity piezocomposites are frequently used in Medical applications and nondestructive testing. When the transducer is used for special applications as, for instance air-coupled transmission, it is necessary to compensate for the high difference of acoustic impedance between transducer and medium using high amplitude pulses to generate high acoustic signal. Thus, the nonlinear behavior of the transducer must be taken into account in similar application conditions. The newly developed method, which performs the nonlinear characterization with burst signal excitation near the thickness resonance frequency, is based on the measure of the current as well as the vibration velocity of the piezocomposite transducer. The current of the stationary response is measured before the end of the burst signal excitation. Burst excitation enables us to measure the nonlinear characterization without producing overheating in the transducers. The amplitude level dependence of mechanical losses tandelta(m) and the stiffness increases |Deltac/c(0)| have been studied, as well as the velocity dependence of a point of the transducer, measured with a laser vibrometer. In this method, the power level applied to the transducers can be higher than other nonlinear measurement methods, providing measurements of high accuracy.  相似文献   

17.
In this paper, we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal. Size and spatial arrangement determine the performance of the virtual transducer. In this study, the scatterers utilized as virtual transducers are arranged in different manners, such as on a straight line or on an arc line. We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle, which is similar to the true transducers. We also change the size of virtual transducer and study its influence on image quality. It is found that the bigger scatterers provide better images than the smaller ones. Especially, when the size of scatterers is reduced to the wavelength of photoacoustic wave, the image quality observably decreases, owing to the strong diffraction effect. Thus, it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength. The simulations are conducted, and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.  相似文献   

18.
桑永杰  蓝宇  刘茂伊 《声学学报》2019,44(6):1068-1073
使用双面同相振动的弯曲圆盘换能器驱动双Helmholtz共振腔,既放大了弯曲圆盘换能器弯曲共振频率以下频段的声输出,又利用两个Helmholtz共振腔的同相声源辐射模型实现了在Helmholtz共振频率处的"∞"字形垂直指向性,实现了低频指向性声发射。阐述了换能器实现"∞"字形低频指向性发射的机理,研究了腔体长度、金属圆片厚度及弯曲圆盘边缘简支厚度等关键结构参数对Helmholtz共振频率的影响,求解了换能器的发送电压响应、指向性等参数。依据仿真结果制作了实验样机,在消声水池中进行了电声性能测试。测试结果显示,指向性形状及液腔共振频率与仿真结果基本相符。这种由弯曲圆盘驱动的双Helmholtz共振腔水声换能器为实现水声换能器小尺寸、低频指向性发射提供了一种技术手段。   相似文献   

19.
Transducers for acoustic beacons which can produce outgoing signals with wave fronts whose horizontal cross sections are circular or spiral are studied experimentally. A remote hydrophone is used to determine its aspect relative to the transducers by comparing the phase of the circular signal to the phase of the spiral signal. The transducers for a "physical-spiral" beacon are made by forming a strip of 1-3 piezocomposite transducer material around either a circular or spiral backing. A "phased-spiral" beacon is made from an array of transducer elements which can be driven either in phase or staggered out of phase so as to produce signals with either a circular or spiral wave front. Measurements are made to study outgoing signals and their usefulness in determining aspect angle. Vertical beam width is also examined and phase corrections applied when the hydrophone is out of the horizontal plane of the beacon. While numerical simulations indicate that the discontinuity in the physical-spiral beacon introduces errors into the measured phase, damping observed at the ends of the piezocomposite material is a more significant source of error. This damping is also reflected in laser Doppler vibrometer measurements of the transducer's surface velocity.  相似文献   

20.
A prototype of a tomography system for reconstructing the distributions of acoustic nonlinear parameters is developed and manufactured on the basis of the effect of nonlinear noncollinear interaction of three primary waves. Application of coded primary signals with further correlation processing of a detected combination signal makes it possible to reconstruct the complete image of an object as a result of a single experiment using a small number of transducers, i.e., three radiators and one receiver. A mirror system is proposed, consisting of two coaxial conical acoustic mirrors that make it possible to transform the front of a wave from a cylindrical transducer into a homogeneous quasi-plane beam with a large width close to the real medical diagnostics requirements. Results of physical experiments are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号