首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work presents a fast method for the simultaneous separation and determination of glimepiride, glibenclamide, and two related substances by RP LC. The separation was performed on a Chromolith Performance (RP-18e, 100 mm x 4.6 mm) column. As mobile phase, a mixture of phosphate buffer pH 3, 7.4 mM, and ACN (55:45 v/v) was used. Column oven temperature was set to 30 degrees C. The total chromatographic run time was 80 s. This was achieved using a flow program from 5 to 9.9 mL/min. Precisions of the interday and the intraday assay for both retention times and peak areas for the four analyzed compounds were less than 1.2%. The method showed good linearity and recovery. The short analysis time makes the method very valuable for quality control and stability testing of drugs and their pharmaceutical preparations.  相似文献   

2.
Herba Epimedii (known as Yinyanghuo in China) is one of the commonly used Chinese medicines. Flavonoids are considered as its active components. In this study, a CEC method was developed for the simultaneous determination of seven flavonoids, including hexandraside E, kaempferol-3-O-rhamnoside, hexandraside F, icariin, epimedin A, B, and C, in Epimedium using baicalein as internal standard (IS). The influence of relevant parameters such as buffer concentration, pH, and proportion of ACN was investigated and optimized. Baseline separation was obtained using a Hypersil C18 capillary (3 microm, 100 microm/25 cm) with a mixture of 20 mM phosphate buffer (pH 4.0)/ACN (70:30 v/v) as mobile phase running at 30 kV and 25 degrees C in 20 min. All calibration curves showed good linearity (r2 >0.9992) within test ranges. The LOD and LOQ were lower than 8.6 and 42.8 microg/mL, respectively. The RSDs of intra- and interday for relative peak areas of seven analytes were less than 3.1 and 4.4%, and the recoveries were 95.2-103.3%. Samples of different Epimedium species were analyzed using the validated method, which is useful for quality control of Epimedium and its medical preparations.  相似文献   

3.
A systematic optimization of the HPLC separation of a mixture containing 11 pollutant phenols (PPs) using a Hypersil ODS (250 mm x 4.6 mm, 5 microm) column and UV-DAD detection has been carried out. The binary mobile phases used were obtained by mixing 50 mM phosphate (pH = 3.0) and methanol, ACN, or THF as organic modifiers. After selecting ACN as an organic modifier, the effects of pH and temperature on PPs separation were studied. A mobile phase of 50 mM acetate (pH = 5.0)-ACN (60:40 v/v) at 50 degrees C allowed the separation of 11 phenols but not to baseline in 17 min. To improve the performance of this separation, the following RP columns were tested: Luna C18 (2), Purospher C18, Synergi C12, Synergi Fusion C18, Gemini C18, Luna Cyano, Lichrospher C8, and Envirosep-PP (polymeric). In all the cases, the performance (analysis time, retention, selectivity, resolution, asymmetry factors, and efficiency) was evaluated. A further reoptimization of the mobile phase was carried out for all the columns by studying the ACN content and pH, with the aim of improving the above-mentioned separations and selecting the most suitable one for PPs analysis.  相似文献   

4.
EKC methods for the enantiomeric resolution of homocamptothecin derivatives, potent anticancer agents targeting DNA topoisomerase I selected for clinical trials, were developed using highly sulfated beta-CD as chiral selectors at acidic pH. Optimal electrophoretic conditions, with migration times under 15 min, were as follows: for the neutral homocamptothecin analog 1, a BGE of 75 mM phosphate buffer pH 2.5 (H(3)PO(4) + triethanolamine)/ACN - 95/5 v/v, with 7.5% w/v highly S-beta-CD, an applied field of 0.2 kV/cm and a fused capillary temperature control of 30 +/- 0.1 degrees C (typical current approximately 175 microA); for the cationic homocamptothecin 2, a BGE of 25 mM phosphate buffer pH 2.5 (H(3)PO(4) + TEA)/ACN - 90/10 v/v, with 2.5% w/v highly S-beta-CD, an applied field of 0.15 kV/cm and a fused capillary temperature control of 25 +/- 0.1 degrees C (typical current approximately 45 muA), and both are validated. The best results in terms of LOQ were obtained by EC with fluorescence detection: 10 ng/mL and 20 ng/mL for 1 and 2, respectively (LOQ divided by 150 for 1 and 5 for 2 with respect to UV), thus making this method particularly convenient for enantiomeric purity determination of galenic forms. UV detection appears to be an alternative to fluorescence for the analysis of the main component either for the control of galenic forms or for therapeutic adaptation. Moreover, this method exhibits better performances than HPLC.  相似文献   

5.
In this work, the simultaneous separation of ten phenolic compounds (protocatechuic, p-coumaric, o-coumaric, vanillic, ferulic, caffeic, syringic acids, hydroxytyrosol, tyrosol and oleuropein) in extra virgin olive oils (EVOOs) by isocratic RP CEC is proposed. A CEC method was optimized in order to completely resolve all the analyzed compounds by studying several experimental parameters. The influence of the stationary phase type (C(18) and C(8) modified silica gel), buffer concentration and pH as well as the organic modifier content of the mobile phase on retention factors, selectivity and efficiency were evaluated in details. A capillary column packed with Cogent bidentate C(18) particles for 23 cm and a mobile phase composed by 100 mM ammonium formate buffer pH 3/H(2)O/ACN (5:65:30 v/v/v) allowed the baseline resolution of the compounds under study in less than 35 min setting the applied voltage and temperature at 22 kV and 20 degrees C, respectively. A study, evaluating the intra- and interday precision as well as LOD and LOQ and method linearity was developed in accordance with the analytical procedures for method validation. LODs were in the range of 0.015-2.5 microg/mL, while calibration curves showed a good linearity (r(2) >0.997). The CEC method was applied to the separation and determination of these compounds in EVOO samples after a suitable liquid-liquid extraction procedure. The mean recovery values of the studied compounds ranged between 87 and 99%.  相似文献   

6.
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.  相似文献   

7.
Norton D  Rizvi SA  Shamsi SA 《Electrophoresis》2006,27(21):4273-4287
The CEC-MS of alkyltrimethylammonium (ATMA+) ions with chain lengths ranging from C1-C18 is optimized using an internally tapered column packed with mixed mode reversed phase/strong cation exchange stationary phase. A systematic study of the CEC separation parameters is conducted followed by evaluation of the ESI-MS sheath liquid and spray chamber settings. First, the optimization of CEC separation parameters are performed including the ACN concentration, triethylamine (TEA) content, buffer pH and ammonium acetate concentration. Using 90% v/v ACN with 0.04% v/v TEA as mobile phase, the separation of longer chain C6-C18-TMA+ surfactants could be achieved in 15 min. Lowering the ACN concentration to 70% v/v provided resolution of shorter chain C1, C2-TMA+ from C6-TMA+ although the total analysis time increased to 40 min. Furthermore, variation of both the ACN and TEA content as well as ionic strength has found to significantly influence the retention of longer chain surfactants as compared to shorter chains. The optimum CEC conditions are 70% v/v ACN, 0.04% v/v TEA, pH 3.0 and 15 mM ammonium acetate. Next, the optimization of the ESI-MS sheath liquid composition is conducted comparing methanol to isopropanol followed by the use of experimental design for analysis of spray chamber parameters. Overall, the developed CEC-ESI-MS method allows quantitative and sensitive monitoring of ATMA+ from < or =10 microg/mL down to 10 ng/mL. Utilizing the optimized CEC-ESI-MS protocol, the challenging analysis of commercial sample Arquad S-50 ATMA+ containing cis-trans unsaturated and saturated soyabean fatty acid derivatives is demonstrated.  相似文献   

8.
In this work, a novel polysaccharide‐based chiral stationary phase, cellulose tris(4‐chloro‐3‐methylphenylcarbamate), also called Sepapak 4 has been evaluated for the chiral separation of amlodipine (AML) and its two impurities. AML is a powerful vasodilatator drug used for the treatment of hypertension. Capillary columns of 100 μm id packed with the chiral stationary phase were used for both nano‐LC and CEC experiments. The optimization of the mobile phase composed of ACN/water, (90:10, v/v) containing 15 mM ammonium borate pH 10.0 in nano‐LC allowed the chiral separation of AML and the two impurities, but not in a single run. With the purpose to obtain the separation of the three pairs of enantiomers simultaneously, CEC analyses were performed in the same conditions achieving better enantioresolution and higher separation efficiencies for each compound. To fully resolve the mixture of six enantiomers, parameters such as buffer pH and concentration sample injection have been then investigated. A mixture of ACN/water (90:10, v/v) containing 5 mM ammonium borate buffer pH 9.0 enabled the complete separation of the three couples of enantiomers in less than 30 min. The optimized CEC method was therefore validated and applied to the analysis of pharmaceutical formulation declared to contain only AML racemate.  相似文献   

9.
A chemometric approach was applied for the optimization of the extraction and separation of the antihypertensive drug valsartan and its metabolite valeryl-4-hydroxy-valsartan from human plasma samples. Due to the high number of experimental and response variables to be studied, fractional factorial design (FFD) and central composite design (CCD) were used to optimize the HPLC-UV-fluorescence method. First, the significant variables were chosen with the help of FFD; then, a CCD was run to obtain the optimal values for the significant variables. The measured responses were the corrected areas of the two analytes and the resolution between the chromatographic peaks. Separation of valsartan, its metabolite valeryl-4-hydroxy-valsartan and candesartan M1, used as internal standard, was made using an Atlantis dC18 100 mm x 3.9 mm id, 100 angstroms, 3 microm chromatographic column. The mobile phase was run in gradient elution mode and consisted of ACN with 0.025% TFA and a 5 mM phosphate buffer with 0.025% TFA at pH 2.5. The initial percentage of ACN was 32% with a stepness of 4.5%/min to reach the 50%. A flow rate of 1.30 mL/min was applied throughout the chromatographic run, and the column temperature was kept to 40+/-0.2 degrees C. In the SPE procedure, experimental design was also used in order at achieve a maximum recovery percentage and extracts free from plasma interferences. The extraction procedure for spiked human plasma samples was carried out using C8 cartridges, phosphate buffer (pH 2, 60 mM) as conditioning agent, a washing step with methanol-phosphate buffer (40:60 v/v), a drying step of 8 min, and diethyl ether as eluent. The SPE-HPLC-UV-fluorescence method developed allowed the separation and quantitation of valsartan and its metabolite from human plasma samples with an adequate resolution and a total analysis time of 1 h.  相似文献   

10.
This work deals with the potentiality of nano liquid chromatography (Nano‐LC) for the chiral separation of racemic mixture of tryptophan and some selected derivatives by using 100 µm i.d. fused silica capillary packed with teicoplanin bonded to 5 µm diol silica stationary phase. The experiments were carried out by using a cheap and laboratory‐assembled nano‐LC–UV system. Elution was done in an isocratic mode using a polar organic mobile phase. In order to find the optimum chiral separation of the studied enantiomers, some chromatographic experimental parameters were systematically studied and optimized. Among them, mobile phase composition, namely organic modifier type and concentration, buffer type and pH and aqueous content and sample solvent dilution on retention time, retention factor and enantioresolution factor were studied. Baseline enantioresolution and good peak shape was achieved utilizing the mobile phase containing 40 mM ammonium formate at pH pH 2.5 in ACN/water/acetone (60:30:10, v/v/v) at 520 nL/min in less than 8 min analysis time.  相似文献   

11.
Flavonoids were separated utilizing CEC technique. Baseline separation of biologically relevant flavonoids was obtained using a 100 microm ID fused-silica capillary filled with 3 microm Silica-C18 material and an optimized mobile phase comprising of 20 mM Tris-HCl (pH 6.5), ACN and water at a ratio of 10/40/50 v/v/v. Separations were carried out at 25 kV and a column temperature of 25 degrees C. The influence of relevant parameters for the CEC separation, such as buffer concentration, pH, separation voltage, and ACN concentration, was investigated and optimized. Dependencies of the electroendoosmotic flow (EOF) on these parameters and effects on the resolution of the analytes were studied. During analyses the solvents used for dissolving the samples turned out to have significant effects on the separation of flavonoids. The optimized system was then successfully used for the separation of the flavonoids epicatechin, myricetin, quercetin, naringenin, and hesperetin. CEC turned out to be a useful complementary tool for the economic analysis of flavonoids in addition to common HPLC, muHPLC, and CE methodologies. This method can be used for real applications in phytomics.  相似文献   

12.
The ability of different stationary phases developed for the analysis of polar compounds (ZIC-HILIC, ZIC-pHILIC and Zorbax SB-Aq) to separate isoniazid, its metabolites (acetylisonazid, pyridoxal isonicotinoyl hydrazone, pyridoxal isonicotinoyl hydrazone 5-phosphate), pyridoxine, pyridoxal and pyridoxal 5-phosphate under MS compatible conditions was systematically investigated using HPLC-UV. The mobile phase strength, pH and buffer concentration were modified to assess their impact on the retention of these compounds. The best available separation of the compounds was achieved using 1 mM ammonium formate (pH≈6) and ACN (20:80, v/v) on ZIC-HILIC and employing 5 mM ammonium formate (pH 3.0) and ACN (40:60, v/v) on ZIC-pHILIC. A gradient profile using 0.5 mM ammonium formate (pH≈6) and MeOH (0-12 min: 10% MeOH, 12-15 min: 10-50% MeOH, 15-35 min: 50% MeOH, 35.0-35.2 min: 50-10% MeOH, 35.2-45.0 min: 10% MeOH) provided the best separation of the compounds on Zorbax SB-Aq. Subsequent LC-MS analysis demonstrated that ZIC-HILIC is useful for the analysis of pyridoxine, pyridoxal and pyridoxal isonicotinoyl hydrazone. However, the chromatographic conditions developed for the analysis of the compounds on Zorbax SB-Aq are capable of achieving the best separation of all compounds in this study with the higher sensitivity for most of the analytes.  相似文献   

13.
A new and accurate HPLC method using sulfobutylether-beta-cyclodextrin (SBE-beta-CD) as chiral mobile phase additive (CMPA) was developed and validated for the determination of R-(+)pantoprazole in S-(-)pantoprazole. The influences of type and concentration of CD, ACN content and buffer pH of mobile phase on the resolution and retention of enantiomers were investigated. A baseline resolution of pantoprazole enantiomers was achieved on a Spherigel C18 column (150 mm x 4.6 mm, 5 microm) using ACN and 10 mM phosphate buffer (pH 2.5) containing 10 mM SBE-beta-CD (15:85 v/v) as mobile phase with a flow rate of 0.9 mL/min at 20 degrees C. The detection wavelength was set at 290 nm. The method was extensively validated in terms of accuracy, precision and linearity according to the International Conference on Harmonisation (ICH) guidelines and proved to be robust. The LOD and LOQ for R-(+)pantoprazole were 0.2 and 0.5 microg/mL, respectively, with 5 microL injection volume. A good linear relationship was obtained in the concentration range of 0.5-6.0 microg/mL with r(2) >0.999 for R-(+)pantoprazole. The percentage recovery of the R-(+)pantoprazole ranged from 92.1 to 101.2 in bulk drug of S-(-)pantoprazole. The method is capable of determining a minimum limit of 0.05% w/w of R-enantiomer in S-(-)pantoprazole bulk samples.  相似文献   

14.
This work reports the first use of a monolith with method development for the separation of tocopherol (TOH) compounds by CEC with UV detection. A pentaerythritol diacrylate monostearate-ethylene dimethacrylate (PEDAS-EDMA) monolithic column has been investigated for an optimised condition to separate alpha-, beta-, gamma- and delta-TOHs, and alpha-tocopherol acetate (TAc). The PEDAS-EDMA monolith showed a remarkably good selectivity for separation of the TOH isomers including the beta- and gamma-isomers which are not easily separated by standard C8 or C18 particle-packed columns. Retention studies indicated that an RP mechanism was involved in the separation on the PEDAS-EDMA column, but polar interactions with the underlying ester and hydroxyl groups enhanced the separation of the problematic beta- and gamma-isomers. Separation of all the compounds was achieved within 25 min using 3:10:87 v/v/v 100 mM Tris buffer (pH 9.3)/methanol/ACN as the mobile phase. The method was successfully applied to a pharmaceutical sample with recoveries from 93 to 99%. Intraday and interday precisions (%RSD) for peak area and retention time were less than 2.3. LODs for all four TOHs and TAc were below 1 ppm.  相似文献   

15.
Hou S  Ding M  Zhu J 《Talanta》2008,75(1):178-182
A reversed-phase ion-pair high-performance liquid chromatographic method, using tetrabutylammonium bromide (TBABr) as ion-pair reagent, has been developed for the simultaneous analysis of silicon (Si) and phosphorus (P) as heteropoly acids in soil and plant samples. The effect of the concentrations of ion-pair reagent, acetate buffer and organic modifier as well as the pH of buffer on separation was made clear. The reaction conditions and stability of heteropoly acids were investigated. Furthermore, the phenomenon occurred in the optimized process was also further researched. The separation was performed on a reversed-phase C(18) column within 11 min with 40:60 (v/v) 0.1M acetate buffer (pH 3.9)-acetonitrile (ACN) containing 0.8 mM TBABr as a mobile phase. The linear ranges of the peak area calibration curves for Si and P were 0.08-50 mg/L and 0.40-50 mg/L, respectively. The detection limits calculated at S/N=3 were 0.0057 mg/L and 0.0280 mg/L for Si and P, respectively. The method was successfully applied to the analysis of soluble and total contents of Si and P in soil and plant samples.  相似文献   

16.
One of the major drawbacks in the analysis of aminoglycoside antibiotics is their lack of UV chromophore and/or fluorophore. Tobramycin, a representative member of this group, was examined in this study. To overcome the detection hurdle, a precapillary derivatization followed by capillary electrophoresis analysis with direct UV detection was investigated. A central composite design was applied to optimize the method and three parameters were selected in this study: buffer pH, temperature and % acetonitrile (ACN). Selectivity between tobramycin main component and its adjacent peaks as well as the peak efficiency and symmetry factors were established as responses. For each response, a model was obtained by a second-order mathematical expression. Successful results were obtained with a simple background electrolyte (BGE) containing 30 mM sodium tetraborate, pH 10.2, and ACN (75:25 v/v). Under these conditions, baseline separation of tobramycin from its adjacent kanamycin B and an unknown peak was achieved. A temperature of 20 degrees C and applied voltage of 28.0 kV were used. The method showed good validation data in terms of precision, limits of quantitation and detection, specificity and linearity and was found to be suitable for analysis of tobramycin bulk pharmaceutical samples.  相似文献   

17.
A rapid and sensitive CEC method with methacrylate ester‐based monolithic column has been developed for separation and determination of five coumarins (byakangelicin, oxypeucedanin hydrate, xanthotoxol, 5‐hydroxy‐8‐methoxypsoralen and bergapten) in Angelica dahurica extract. Surfactant sodium desoxycholate (SDC) was introduced into the mobile phase as the pseudostationary to dynamically increase the selectivity of analytes instead of increasing the hydrophobicity of stationary phase. In addition, other factors, pH of phosphate buffer, ACN content and applied voltage, for instance, have also an obvious effect on the resolution but little on the retention time. Satisfactory separation of these five coumarins was achieved within 6 min under a 30:70 v/v ACN–buffer containing 20 mM sodium dihydrogen phosphate (NaH2PO4) and 0.25 mM SDC at pH 2.51. The RSDs of intraday and interday for relative peak areas were less than 3.0% and 4.7%, respectively; and the recoveries were between 87.5% and 95.0%. The LODs were lower than 0.15 μg/mL and the LOQs were lower than 0.30 μg/mL, respectively, while calibration curves showed a good linearity (r2 > 0.9979). Finally, five target coumarins from the crude extracts of A. dahurica were separated, purified, and concentrated by D‐101 macroporous resin, and were successfully separated and quantitatively determined within 6 min.  相似文献   

18.

A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.

  相似文献   

19.
A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.  相似文献   

20.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号