首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An innovative reversed-phase high-performance liquid chromatographic method is validated for the simultaneous determination of rofecoxib and celecoxib in human plasma. The internal standard is 4-n-pentyl-phenyl-acetic acid. Good chromatographic separation is achieved using a Zorbax SB-CN (5 microm) analytical column operated at room temperature and mobile phase consisting of acetonitrile and water containing 0.1M potassium dihydrogen orthophosphate buffer adjusted to pH 2.4 with 85% orthophosphoric acid (42:58, v/v). UV detection is performed at 254 nm, and the flow rate is maintained at 1.0 mL/min. Plasma samples are extracted into an organic solvent (1-chlorobutane) and evaporated under an air flow. The calibration curve for rofecoxib is linear over the range of 10 to 500 microg/L, and the celecoxib calibration curve is linear over the range of 20 to 2000 microg/L. The lower limit of quantitation for rofecoxib and celecoxib is 10 and 20 microg/L, respectively, using 1.0 mL of human plasma. The validation data show that the assay is sensitive, accurate, specific, and reproducible for the determination of rofecoxib and celecoxib. This method is therefore appropriate for pharmacokinetic studies to quantitate these therapeutic agents in patients with arthritis conditions.  相似文献   

2.
Yeh HH  Lin SJ  Ko JY  Chou CA  Chen SH 《Electrophoresis》2005,26(4-5):947-953
A simple and selective micellar electrokinetic chromatography (MEKC) with UV detection is described for simultaneous determination of amikacin, tobramycin, and kanamycin A, performed in Tris buffer (180 mM; pH 9.1) with 300 mM sodium pentanesulfonate (SPS) as an anionic surfactant. Under this condition, good separation with high efficiency and the required short analysis time is achieved. The linear ranges of the method for the determination of amikacin, tobramycin, and kanamycin A were 0.1-0.5 mg / mL, 0.4-2.0 mg / mL, and 0.4-2.0 mg / mL, respectively; the detection limits (signal-to-noise ratio = 3; injection, 0.5 psi 5 s) were 0.08, 0.2, and 0.2 mg / mL, respectively. The small amount of sample required and the expeditiousness of the procedure allow content uniformity to be determined in individual commercial products.  相似文献   

3.
An isocratic reversed-phase high-performance liquid chromatographic method has been developed for separation and simultaneous determination of COX-2 inhibitors, viz., celecoxib, rofecoxib, valdecoxib, nimesulide and nabumetone, using 4-chloro-2-nitroaniline as internal standard. Good chromatographic separation was achieved using a reversed-phase Inertsil C(18) column with mobile phase consisting of methanol and 0.05% aqueous glacial acetic acid (68:32 v/v) using photodiode array (PDA) detector at 230 nm. It was validated with respect to accuracy, precision, linearity, limit of detection and quantification. The linearity range was found to be 1.0--20 microg/mL and the percentage recoveries were between 97.55 and 100.14. The method is suitable not only for the estimation of active ingredients in pharmaceutical dosage forms but also in vitro estimations in human plasma. It is simple, rapid, selective and capable of detecting and determining COX-2 inhibitors with a detection limit of 0.127--1.040 microg/mL simultaneously.  相似文献   

4.
A selective and sensitive derivative photometric method has been developed for the determination of trace amounts of Zn2+ with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant. The molar-absorption coefficient and analytical sensitivity of the 1:2 complex at 554 nm are 1.19 x 10(5) L mol(-1) cm(-1) and 0.56 ng mL(-1), respectively. The detection limit is 1.96 x 10(-2) ng mL(-1) and Beer's law is valid in the 0.02-0.66 microg mL(-1) range of Zn2+. The developed derivative procedure, using the zero-crossing measurement approach, is applied for the rapid and selective simultaneous determination of Zn2+ and Cd2+ in the range of 0.06-0.66 and 0.20-1.60 microg mL(-1), respectively. Complex matrices, including reference materials, environmental and biological samples and synthetic mixtures, have been successfully analyzed for trace amounts of the two metal ions.  相似文献   

5.
Cloud point extraction has been used for the preconcentration and simultaneous spectrophotometric determination of nickel and cobalt after the formation of a complex with 2-amino-cyclopentene-1-dithiocarboxylic acid (ACDA), and latter analysis by spectrophotometer using Triton X-114 as surfactant. The parameters affecting the separation phase and detection process were optimized. Under the optimum experimental conditions (i.e. pH=5, 0.07 mM ACDA, Triton X-114=0.25% (w/v)), calibration graphs were linear in the range of 20-500 and 20-200 microg l(-1) with detection limits of 10 and 7.5 microg l(-1) for Ni and Co, respectively. The method was applied to the determination of Ni and Co in natural and waste water samples with satisfactory results.  相似文献   

6.
A simple micellar electrokinetic chromatographic method is described for simultaneous determination of digoxin and digitoxin. The simultaneous analysis of digoxin and digitoxin was performed in Tris buffer (10 mM; pH 9) with 90 mM sodium dodecyl sulfate and 10% isopropyl alcohol as an anionic surfactant and organic modifier. Under these conditions, good separation with high efficiency is achieved in short analysis times. Several parameters affecting the separation of the drugs were studied, including the pH and concentrations of the Tris buffer and sodium dodecyl sulfate. The linear range of the method for the determination of digoxin and digitoxin was over 0.01–0.3 mg/mL; the detection limit (signal to noise ratio = 3; injection 3.5 kPa 3 s) was 4 and 6 μg/mL, respectively. Application of the proposed method to the determination of digoxin in commercial tablets and in injections proved to be feasible.  相似文献   

7.
Basheer C  Lee HK 《Electrophoresis》2007,28(19):3520-3525
A facile, sensitive, and selective method was developed for the simultaneous separation and determination of copper(I) [Cu(+)] and copper(II) [Cu(2+)] ions using CE with direct UV detection. The copper ions were complexed with a 1.5 mM bicinchoninic acid disodium salt solution at pH 8.7 prior to analysis. Acetate buffer (2 mM) was used as the CE running buffer. Parameters affecting CE separation such as sample pH, applied voltage, concentration of complexing agent, nature of the buffer solution, and interferences by other metal ions, were evaluated. The LODs for Cu(+) and Cu(2+) were 3.0 and 2.5 microg/mL (S/N = 3), respectively. The developed method allows the simultaneous determination of Cu(+) and Cu(2+) in less than 5 min with RSDs of between 5.3 and 9.5% for migration time and between 3.4 and 9.7% for peak areas, respectively. At optimum conditions, the percentage recoveries of Cu(+) and Cu(2+) were found to be 99.4 and 99.5%.  相似文献   

8.
A fast, green, sensitive, and accurate analytical method using high‐performance liquid chromatography couple with fluorescence detection was established and validated for the simultaneous determination of amlodipine besylate and celecoxib in their recently approved fixed‐dose combination tablets (1:20). Separation of the two drugs was achieved on C18 reversed‐phase column (Thermo ODS Hypersil, 4.6 × 250 mm, particle size 5 µm) using acetonitrile:potassium phosphate buffer (50 mM; pH 5.5, 60:40 v/v) as a mobile phase at 40°C, which eluted at a rate of 1 mL/min. Detection was carried out with excitation and emission wavelengths of 360 and 446 nm for amlodipine and 265 and 359 nm for celecoxib, respectively. The method was linear over a concentration range of 0.05‐2 and 0.05‐10 µg/mL and limit of detection reached to 0.017 and 0.0167 µg/mL for amlodipine and celecoxib, respectively. The developed method was successfully applied to assess the cited drugs in their newly FDA approved fixed‐dose combination tablet dosage form. Furthermore, the method was found to be sensitive and eco‐friendly green alternative to the reported methods as it was evaluated according to the green analytical procedure index tool guidelines and analytical Eco‐Scale.  相似文献   

9.
The current work presents analytical procedures for simultaneous determination of tarabine PFS and adriblastina by micellar electrokinetic chromatography (MEKC) and liquid chromatography (LC). For MEKC analysis, separations and identifications were accomplished using uncoated fused-silica capillary with hydrodynamic injections in the presence of 50mM borate/phophate pH 8.7 and 100mM SDS. The migration times of tarabine PFS and adriblastina were found to be 2.70 and 6.40min, respectively. Calibration curves were established for 10-300ng/mL (r=0.998) tarabine PFS and for 8-120microg/mL (r=0.999) adriblastina. For LC analysis, separations were performed on teicoplanin stationary phase with reversed mobile phase containing methanol:buffer pH 4.05 (20:80%, v/v) at 285nm. The retention times of tarabine PFS and adriblastina were 5.18 and 7.20min, respectively. Calibration curves were established for 3-90microg/mL (r=0.998) tarabine PFS and for 10-120microg/mL (r=0.999) adriblastina. Both MEKC and LC methods were applied for the simultaneous determination of analytes in urine samples.  相似文献   

10.
A simple micellar electrokinetic chromatography (MEKC) with UV detection is described for simultaneous analysis of cefepime and L-arginine. The determination of cefepime and L-arginine in pharmaceutical preparations was performed at 25degreesC using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drugs were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC conditions, good separation with high efficiency and short analysis times is achieved. Using cefazolin as an internal standard, the linear ranges of the method for the determination of cefepime and L-arginine were over 5-100 microg/mL; the detection limits of cefepime (signal to noise ratio = 3; injection 3.45 kPa, 3 s) and L-arginine (signal to noise ratio = 3; injection 3.45 kPa, 3 s) were 2 microg/mL and 4 microg/ mL, respectively. Applicability of the proposed method for the determination of cefepime and L-arginine in commercial injections was demonstrated.  相似文献   

11.
Capillary electrophoretic separation coupled with end-column amperometric detection for the simultaneous quantification of butylated hydroxyanisole (BHA) and propyl gallate (PG) in food was developed. Important factors affecting separation and detection, such as the running buffer, separation voltage, and detection potential, were investigated in detail. An improved working electrode preparation method was used, where a carbon disk of 33 microm in diameter was sealed in a tip and positioned opposite the outlet of a capillary. The experiments indicated that the preparation method was simple, and the obtained electrode exhibited good flexibility and stability for the determination of phenolic antioxidants. The separation was carried out within 5 min using a 50 cm length capillary, with a solution containing 5 mM phosphate and 5 mM borax of pH 8.84 as a separation buffer, and a separation potential of 20 kV. Amperometric detection was achieved with an applied potential of 0.70 V versus Ag|AgCl| saturated KCl. There was excellent linearity between the peak current and the concentrations of the analytes in the range of 1.8 - 180.2 microg/mL for BHA and 10.6 - 212.2 microg/mL for PG, respectively. Relative standard deviations of 4.92% for BHA and 5.27% for PG were obtained, respectively. The developed method was successfully applied for the determination of antioxidants in several commercial foods.  相似文献   

12.
A ratio-spectra zero-crossing first-derivative spectrophotometric method and 2 chemometric methods have been used for the simultaneous determination of ternary mixtures of caffeine (A), 8-chlorotheophylline (B), and chlorphenoxamine hydrochloride (C) in bulk powder and dosage forms. In the ratio-spectra zero-crossing first-derivative spectrophotometric technique (1DD), calibration curves were linear in the range of 4-20 microg/mL for A, B, and C (r = 0.9992, 0.9994, and 0.9976, respectively). The measurements were carried out at 212, 209.2, and 231.4 nm for A, B, and C, respectively. The detection limits for A, B, and C were calculated to be 0.24, 0.34, and 0.13 microg/mL, and the percentage recoveries were 99.1 +/- 0.89, 100.1 +/- 0.95, and 100.1 +/- 1.0, respectively. Two chemometric methods, namely, the partial least-squares (PLS) model and the principal component regression (PCR) model, were also used for the simultaneous determination of the 3 drugs in the ternary mixture. A training set consisting of 15 mixtures containing different ratios of A, B, and C was used. The concentration used for the construction of the PLS and PCR models varied between 4 and 25 microg/mL for each drug. These models were used after their validation for the prediction of the concentrations of A, B, and C in mixtures. The detection limits for A, B, and C were calculated to be 0.13, 0.15, and 0.14 microg/mL, respectively, and the percent recoveries were found to be 99.8 micro 0.96, 99.9 micro 0.94, and 99.9 micro 1.18, respectively, for both methods. The 3 proposed procedures are rapid, simple, sensitive, and accurate. No preliminary separation steps or resolution equations are required; thus, they can be applied to the simultaneous determination of the 3 drugs in commercial tablets and suppositories or in quality-control laboratories.  相似文献   

13.
Lv J  Pan L  Ye Y  Zhou Y 《Journal of separation science》2007,30(15):2466-2472
A sensitive and selective HPLC method with UV detection for the simultaneous determination of picroside-I and picroside-II (active components of total glycoside of Picrorhiza scrophulariiflora Pennell) was developed and validated in rat plasma. After simple deproteinization using acetonitrile, analysis was performed on an RP-C18 column (250 mm x 4.6 mm id, 5 microm) with a mobile phase consisting of acetonitrile and water at a flow rate of 1.0 mL/min used in a gradient elution program. The UV detection wavelength was set at 262 and 277 nm. Linear calibration curves were obtained in the concentration range of 0.10-50 microg/mL for picroside-I and 0.25-200 microg/mL for picroside-II. The lower limits of quantification were 0.1 and 0.25 microg/mL for picroside-I and picroside-II, respectively. The recoveries from spiked control samples were up to 80% for both picroside-I and picroside-II. Accuracy and precision of the validated method were both within the acceptable limits of <15% at three quality control concentrations. The analytes were stable after three freeze-thaw cycles. The method was successfully used to determine concentrations of picroside-I and picroside-II after intravenous administration of total glycoside of Picrorhiza scrophulariiflora Pennell to rats.  相似文献   

14.
A simple reversed-phase liquid chromatographic method is developed for the simultaneous quantitation of the anticancerous drugs vincristine, vinblastine, and their precursors catharanthine and vindoline using a Merck Chromolith Performance reversed-phase high-performance liquid chromatography column. A better resolution is obtained in comparison with available particulate-type C18 columns. The column provides good reproducibility and peak symmetry. Chromatography is carried isocratically with a mobile phase of acetonitrile-0.1M phosphate buffer containing 0.5% glacial acetic acid (21:79, v/v; pH 3.5) at a flow rate of 1.2 mL/min and UV detection at 254 nm. Parameters such as linearity, limits of quantitation (LOQ) and detection (LOD), precision, accuracy, recovery, and robustness are studied. The method is selective and linear for alkaloid concentration in the range 0.25 microg-25 microg/mL. The LOQ and LOD are 25, 46, 56, and 32 microg/mL and 8, 14, 18, and 10 microg/mL, respectively. The results of accuracy studies are good. Values for coefficient of variation are 2.50, 1.82, 1.33, and 1.13, respectively. The percent recovery of the alkaloids was found to be 96%, 97%, 98%, and 98%, respectively. Peak purity and homogeneity of these compounds in plant extract is studied using a photodiode-array detector. This simple and rapid method of analysis is applied for the determination of these alkaloids in a large number of leaf extracts of Catharanthus roseus..  相似文献   

15.
An assay for the simultaneous determination of the enantiomers of hydroxymebendazole (OH-MBZ) and hydroxyaminomebendazole (OH-AMBZ) together with aminomebendazole (AMBZ) in human plasma is described for the first time. It is based upon liquid-liquid extraction at alkaline pH from 0.5 mL plasma followed by analysis of the reconstituted extract by CE with reversed polarity in the presence of a 50 mM, pH 4.2 acetate buffer containing 15 mg/mL sulfated beta-CD as chiral selector. For all compounds, detection limits are between 0.01 and 0.04 microg/mL, and intraday and interday precisions evaluated from peak area ratios are <6.9 and <8.5%, respectively. Analysis of 39 samples of echinoccocosis patients undergoing pharmacotherapy with mebendazole (MBZ) revealed that the ketoreduction of MBZ and AMBZ is highly stereoselective. One enantiomer of each metabolite (firstly detected peak in both cases) could only be detected. The CE data revealed that OH-MBZ (mean: 0.715 microg/mL) is the major metabolite followed by AMBZ (mean: 0.165 microg/mL) and OH-AMBZ (mean: 0.055 microg/mL) whereas the MBZ plasma levels (mean: 0.096 microg/mL, levels determined by HPLC) were between those of AMBZ and OH-AMBZ.  相似文献   

16.
A specific, accurate, precise and reproducible high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous quantitation of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib in human plasma. The method employed a simple liquid-liquid extraction of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib and internal standard (IS, DRF-4367) from human plasma (500 microL) into acetonitirile. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C18 column (4.6 x 250 mm, 5 microm). The chromatographic separation was achieved by gradient elution consisting of 0.05 M formic acid (pH 3)-acetonitrile-methanol-water at a flow rate of 1.0 mL/min. The eluate was monitored using an ultraviolet (UV) detector set at 235 nm. The ratio of peak area of each analyte to IS was used for quantification of plasma samples. Nominal retention times of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide, IS and celecoxib were 15.63, 17.20, 21.66, 24.95, 26.27, 30.24 and 32.22 min, respectively. The standard curve for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib was linear (r2 > 0.999) in the concentration range 0.1-50 microg/mL and for nimesulide (r2 > 0.999) in the concentration range 0.5-50 microg/mL. Absolute recovery was >83% from human plasma for all the analytes and IS. The lower limit of quantification (LLOQ) of nimesulide was 0.5 microg/mL and for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib the LLOQ was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of QC samples, 0.1, 0.3, 15.0 and 40.0 microg/mL (for all analytes except nimesulide), were in the range 2.29-9.37% relative standard deviation (RSD) and 0.69-10.28% RSD, respectively. For nimesulide the inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.5, 1.5, 15.0 and 40.0 microg/mL, were in the range 3.21-7.37% RSD and 0.97-7.06% RSD, respectively. Accuracy in the measurement of QC samples for all analytes was in the range 91.03-106.38% of the nominal values. All analytes including IS were stable in the battery of stability studies, viz. bench top, autosampler and freeze-thaw cycles. Stability of all analytes was established for 21 days at -20 degrees C. The application of the assay in an oral pharmacokinetic study in rats co-administered with celecoxib and valdecoxib is described.  相似文献   

17.
The simultaneous determination of 16 estrogens, dehydroepiandrosterone (DHEA) and their glucuronide and sulfate conjugates by micellar electrokinetic chromatography (MEKC) with sodium cholate micelle is reported. Sodium cholate, sodium dodecylsulfate (SDS) and alpha-, beta-, gamma-cyclodextrins were studied as micelle reagents in the pH range of 7.0-10.0. Estrogens, DHEA and their glucuronide and sulfate conjugates were separated using a 50 cm x 50 microm capillary with 10 mM borate-phosphate buffer (pH 8.0) containing 50 mM sodium cholate as carrier. The method could simultaneously determine 1.0-1000 microg/mL of steroids and metabolites in 100 microL of serum by photometric detection at 214 nm within 14 min and 80 ng/mL steroids could be determined by using 2.0 mL of serum. The relative standards deviations were 6.7-7.7% at 10 microg/mL in serum. The recoveries were 89.1-92.0% with 10 microg/mL serum samples.  相似文献   

18.
A simple HPLC method with ultraviolet detection has been developed and validated for the simultaneous determination of haplamine and its metabolites (trans/cis-3,4-dihydroxyhaplamine) in rat. A liquid-liquid extraction was used to extract the compounds from rat plasma. The analysis was performed on a C(18) Nucleosil Nautilus column. The mobile phase consisted of water (A) and a mixture of methanol and acetonitrile (85:15; v/v) (B) used in gradient mode (38-40% B for 10 min, 40-58% B for 49 min, 58-38% B for 1 min, and 38% for 5 min) pumped at 1 mL/min. The calibration curves showed good linearity with correlation coefficients greater than 0.999 for the analytes in the investigated concentration range. The lower limit of detection was 0.007, 0.008 and 0.009 microg/mL and the lower limit of quantification was 0.014, 0.017 and 0.018 microg/mL for haplamine, and trans/cis-3,4-dihydroxyhaplamine, respectively. The method was applied to a preliminary pharmacokinetic study in rats. This method proved to meet fully the standards required of experimental pharmacokinetic studies and should be used in further preclinical investigation.  相似文献   

19.
A simple high-performance liquid chromatography method using a diode array detector (DAD) is developed for the simultaneous analysis of five major catechins: (+)-catechin (C), (-)-epicatechin (EC), (-)-gallocatechin (GCT), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), and the phenolic plant metabolites gallic acid (GA) and rutin (RT) in lyophilized extracts of Cistus species. The optimal analytical conditions are investigated to obtain the best resolution and the highest UV sensitivity for the quantitative detection of catechins. The optimized conditions (acetonitrile-phosphate buffer 50mM, pH 2.5, gradient elution system on a C(18) reversed-phase column with a flow rate of 1 mL/min and UV absorbance at 210 nm) allowed a specific and repeatable separation of the studied analytes to be achieved. All compounds are successfully separated within 32 min. Calibration curves are linear in the 2-50 microg/mL range for GCT, C, and EGCG and in the 5-50 microg/mL range for GA, EGC, EC, and RT. The limit of detection values ranged from 0.24 to 0.74 microg/mL. The limit of quantitation limit values ranged from 0.77 to 1.94 microg/mL. The validated method is applied to the determination of the specific phytochemical markers GA, GCT, C, and RT in Cistus incanus and Cistus monspeliensis lyophilised extracts. The recovery values ranged between 78.7% and 98.2%. The described HPLC method appears suitable for the differentiation and determination of the most common catechins together with the glycoside rutin and the phenolic compound gallic acid and can be considered an effective and alternative procedure for the analyses of this important class of natural compounds.  相似文献   

20.
A simple and rapid high-performance liquid chromatographic (HPLC) method with ultraviolet detection has been developed and validated for the simultaneous determination of rifampicin and sulbactam in mouse plasma. Plasma samples were deproteinized with acetonitrile and separated by HPLC on a RP-18 (125 x 4 mm, 5 microm) column and gradient elution with potassium dihydrogen phosphate solution (pH 4.5; 50 mm) and acetonitrile at a flow-rate of 1.0 mL/min. Rifampicin and sulbactam were monitored at 230 nm and confirmed by means of their UV spectra using a diode-array detector. The method was linear at plasma levels from 1 to 100 microg/mL for rifampicin and from 5 to 200 microg/mL for sulbactam. The limits of quantification were 0.6 microg/mL for rifampicin and 4.2 microg/mL for sulbactam. The intra- and inter-day precisions of the method (RSD) were lower than 5% for both compounds. Average recoveries of rifampicin and sulbactam from mice plasma were 98.2 and 89.3%, respectively. The developed method was successfully applied to the determination of the pharmacokinetic profile of both compounds in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号