首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The Axisymmetric Drop Shape Analysis (ADSA) has been used to study the surface pressure/area isotherms of insoluble surfactant monolayers. The continuous measurement of surface tension as a function of surface area by increasing and decreasing the drop volume allows to investigate the phase transitions in monolayers. The isotherms of two phospholipids, dipalmitoyl phosphatidyl choline (DPPC) and dimyristoyl phosphatidyl ethanolamine (DMPE), show good agreement with those measured by using a conventional Langmuir-Blodgett film balance, except in the coexistence region. The observed disagreements are discussed in terms of differences in compression rate, curvature of the surface and effect of impurities. Evidence of possible geometric effects on monolayer domain formation and growth is given on the basis of BAM images.Due to the small total surface area, the ADSA technique provides advantages as regards homogeneity of temperature, surface pressure, surface concentration and the symmetry of area changes.  相似文献   

2.
Dipalmitoyl phosphatidic acid (DPPA) monolayers at the air-water interface were studied from surface pressure (Pi)-area (A) isotherms and at the microscopic level with Brewster angle microscopy (BAM) under different conditions of temperature, pH, and ionic strength. BAM images were recorded simultaneously with Pi-A isotherms during the monolayer compression-expansion cycles. DPPA monolayers show a structural polymorphism from the liquid-expanded (LE)-liquid-condensed (LC) transition region at lower surface pressures toward liquid-condensed and solid (S) structures at higher surface pressures. An increase in temperature, pH, or ionic strength provokes an expansion in the monolayer structure. The results obtained from the Pi-A measurements are confirmed by the monolayer topography and relative reflectivity. The measurements of relative reflectivity upon monolayer compression showed an increase in relative monolayer thickness of 1.25 and 3.3 times throughout the full monolayer compression from the liquid-expanded to the liquid-condensed and solid states, respectively.  相似文献   

3.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

4.
The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (?-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of ?-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase. The facts indicate the presence of coordination between Ca2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.  相似文献   

5.
Static and dynamic properties, and surface morphologies of monolayers at the air-water interface of a fuzzy rod polymer, poly(γ-stearyl α, L-glutamate), PSLG, have been examined by the Wilhelmy plate method for surface pressure, electrically induced capillary wave diffraction (ECWD), epi-fluorescence microscopy, and atomic force microscopy (AFM). The monolayers were first formed by spreading polymer solutions at the air-water interface and allowing the solvent to evaporate to obtain polymer films, i.e., spread monolayers. The surface mass density was varied by either successive additions of more solutions on a given surface area or step-wise compression of the surface barrier on a Langmuir trough. Surface pressure isotherms at 23–;60°C were confirmed to be reversible and reproducible, and an abrupt change at approximately 60°C was observed, which is reported as the melting point of crystalline stearyl side chains. By AFM, the monolayer director n by surface alignment was confirmed as perpendicular to the compression direction and certain islands of departure from the monolayer state were visualized upon transferring the monolayers horizontally to silicon wafers. Macroscopic anisotropy in the surface alignment was probed by the electrocapillary waves propagated perpendicular (⟂) and parallel (∥) to the director n; the surface tension anisotropy amount to about 7% difference, σ < 0.07, where σ is the surface tension deduced from the wave propagation characteristics. Multidomain morphologies of the monolayers were imaged by epi-fluorescence microscopy and they were found to differ according to the method of monolayer mass density variation, i.e., the successive addition and step-wise compression. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
We have concurrently studied the surface pressure (pi) versus area (A) isotherms and microscopic surface morphological features of Langmuir monolayers of diethylene glycol mono-n-octadecyl ether (C18E2) by film balance and Brewster angle microscopy (BAM) over a wide range of temperature. At temperatures < or =10 degrees C, the monolayers exist in the form of condensed phase even just after the evaporation of the spreading solvent, suggesting that the melting point of the condensed phase is above this temperature. At > or =15 degrees C, the monolayers can exist as gas (G), liquid expanded (LE), and liquid condensed (LC) phases and undergo a pressure-induced first-order phase transition between LE and LC phases showing a sharp cusp point followed by a plateau region in the pi-A isotherms. A variety of 2-D structures, depending on the subphase temperature, are observed by BAM just after the appearance of the cusp point. It is interesting to note here that the domains attain increasingly large and compact shape as the subphase temperature increases and finally give faceted structures with sharp edges and corners at > or =30 degrees C. The BAM observations were coupled with polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to gain better understanding regarding the conformational order and subcell packing of the molecules. The constancy of the methylene stretching modes over the studied temperature range suggests that the hydrocarbon chains do not undergo any conformational changes upon compression of the monolayer. However, the full width at half-maximum (fwhm) values of the asymmetric methylene stretching mode (nu(as)(CH(2))) are found to respond differently with changes in temperature. It is concluded that even though the trans/gauche ratio of the hydrocarbon chains remains virtually constant, the LE-LC phase transition upon compression of the monolayer is accompanied by a loss of the rotational freedom of the molecules.  相似文献   

7.
The effects of the Hofmeister series of ions are ubiquitous in chemistry and biology. In this paper specific ion effects on the surface behavior of a viologen dication, namely 1,1(')-dioctadecyl-4,4(')-bipyridilium, are shown. Surface pressure and surface potential vs area isotherms were obtained on aqueous subphases containing potassium salts with several representative counterions in the Hofmeister series (C6H5O3-7, SO2 -4, HPO2-4, Cl-, Br-, NO-3, I-, and ClO-4). The parameters obtained from the compression isotherms (area per molecule, phase transitions, Young modulus, initial surface potential, and variation of the surface potential upon compression) are dependent on the nature of the counterion, indicating ion specificity. Aqueous subphases containing C6H5O3-7, SO2-4, and HPO2-4 anions yield more expanded viologen monolayers and these anions do not effectively penetrate into the monolayer. Brewster angle microscopy was used to map the different phases of the viologen monolayers at the air-water interface. The Langmuir films were also characterized by UV-vis spectroscopy, with quantitative analysis of the reflection spectra supporting an organizational model in which the viologen chromophore undergoes a gradual transition to a more vertical position with respect to the water surface upon compression. A comparison of the tilt angles of the viologen on the different subphases indicates that anions that can more easily penetrate in the monolayer permit the viologen moieties to adopt a slightly more vertical position with respect to the water surface.  相似文献   

8.
Phase diagram of Gibbs monolayers of mixtures containing n-hexadecyl phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2 has been constructed by measuring surface-pressure-time (pi-t) isotherms with film balance and by observing monolayer morphology with Brewster angle microscopy (BAM). This phase diagram shows a triple point for gas (G), liquid expanded (LE), and liquid condensed (LC) phases at around 6.7 degrees C. Above this triple point, a first-order G-LE phase transition occurring at 0 surface pressure is followed by another first-order LE-LC phase transition taking place at a certain higher surface pressure that depends upon temperature. The BAM observation supports these results. Below the triple point, the pi-t measurements show only one first-order phase transition that should be G-LC. All of these findings are in agreement with the general phase diagram of the spread monolayers. However, the BAM observation at a temperature below the triple point shows that the thermodynamically allowed G-LC phase transition is, in fact, a combination of the G-LE and LE-LC phase transitions. The latter two-phase transitions are separated by time and not by the surface pressure, indicating that the G-LC phase transition is kinetically separated into these two-phase transitions. The position of the LE phase below the triple point in the phase diagram is along the phase boundary between the G and LC phases.  相似文献   

9.
季铵盐型双子表面活性剂与十八醇的混合单分子膜   总被引:1,自引:0,他引:1  
研究了双子表面活性剂12-2-16和12-2-12分别与十八醇(C18H37OH)在空气-水界面上混合单分子膜的π-A等温线. 在相分离表面压以下, 比较了不同表面压下和不同混合比单分子膜的混合表面过剩自由能ΔGMexo, 分析了双子表面活性剂与脂肪醇在空气-水界面上混合膜中的相容性. 结果表明, 12-2-16与C18H37OH在所有混合摩尔比下随着表面压增高, 自由能增大. 12-2-12与C18H37OH混合膜体系的相容性取决于两者的混合比, ΔGMexo随所加入C18H37OH摩尔分数的增加逐渐增大, 从异种分子间净的吸引作用转变到相互排斥作用体系, 转变点为C18H37OH加入量的摩尔分数0.65. 当混合为热力学自发过程时, 增大表面压将有利于混合; 而对相互排斥体系, 增加表面压将使体系内异种分子之间的相互排斥作用更大.  相似文献   

10.
Selective complex formation in Langmuir dicetyl cyclene monolayers on the surface of aqueous solutions of Cu(II), Ni(II), and Zn(II) salts and their mixtures was studied. The effect of selectivity “inversion” of diphilic cyclene immobilized in monolayers on the surface of solutions of a mixture of copper(II) and nickel(II) salts was observed; the inversion was induced by a change in subphase pH. An analysis of the isotherms of monolayer compression and X-ray fluorescence spectra of the corresponding Langmuir-Blodgett films showed that subphase acidification caused a gradual transition from the selective formation of copper-containing macrocyclic complexes to selective complex formation between the ligand and nickel ions. The effect observed was not characteristic of complex formation with similar unsubstituted tetraamines in bulk solution. The phenomenon was interpreted from the point of view of specific conformational transitions of the diphilic macroring in the two-dimensional system organized at the interphase boundary.  相似文献   

11.
In this work, surface film balance and Brewster angle microscopy techniques have been used to analyze the structural characteristics (structure, topography, reflectivity, thickness, miscibility, and interactions) of hydrolysates from sunflower protein isolate (SPI) and dipalmitoylphosphatidylcholine (DPPC) mixed monolayers spread on the air-water interface. The degree of hydrolysis (DH) of SPI, low (5.62%), medium (23.5%), and high (46.3%), and the protein/DPPC mass fraction were analyzed as variables. The structural characteristics of the mixed monolayers deduced from the surface pressure (pi)-area (A) isotherms depend on the interfacial composition and degree of hydrolysis. At surface pressures lower than the equilibrium surface pressure of SPI hydrolysate (pi(e)(SPI hydrolysate)), both DPPC and protein are present in the mixed monolayer. At higher surface pressures (at pi > pi(e)(SPI hydrolysate)), collapsed protein residues may be displaced from the interface by DPPC molecules. The differences observed between pure SPI hydrolysates and DPPC in reflectivity (I) and monolayer thickness during monolayer compression have been used to analyze the topographical characteristics of SPI hydrolysates and DPPC mixed monolayers at the air-water interface. The topography, reflectivity, and thickness of mixed monolayers confirm at microscopic and nanoscopic levels the structural characteristics deduced from the pi-A isotherms.  相似文献   

12.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

13.
The structural and dynamic characteristics of dioctadecyldimethylammonium bromide (DODAB) monolayers on a pure water subphase were investigated by surface film balance, Brewster angle microscopy, and relaxation in area and surface pressure at constant surface pressure and area, respectively. The first compression-expansion cycle of the monolayer is not reversible and the second pi-A compression isotherm deviates to larger molecular areas relative to the first one. At a microscopic level this hysteresis may be assigned to an irreversible hydration of the ammonium groups of DODAB. The morphology and reflectivity of DODAB monolayers during compression and expansion on the monolayer depend on the monolayer history. Bright domains randomly dispersed were observed during compression before collapse. Surprisingly, this random distribution of domains changes into a fractal-like structure during the monolayer expansion in a narrow range of surface pressures. This morphology does not form when the monolayer is previously compressed above the collapse surface pressure. 2D foam-like structure is often observed when the film is expanded at maximum area. Relaxation phenomena in DODAB monolayers are attributed to monolayer reorganization and nucleation of liquid-condensed domains from the liquid-expanded phase. These time-dependent processes are irreversible.  相似文献   

14.
Optical second harmonic generation (SHG) measurements coupled with Π-A isotherms have been shown to be helpful, for the following and comprehension of orientational orders and phase transitions in Langmuir monolayers. Using the SHG-(Π-A) measurements, monolayers of 5-hexadecanoylaminofluorescein on the water surface were examined by monolayer compression. The phase transitions were noticeably revealed. Dependence of the square root of the intensities polarizations quotient in the molecules surface density, allowed establishing tilting orientation alignment phases. In addition, change in the monolayer symmetry CvC2v as it goes through the LE–LC phase transition, was clearly recognized. It was concluded that a possible change in β is taking place due to aggregate formation.  相似文献   

15.
The Langmuir films of two alkylated azacrown ethers at the air-water surface were characterized using surface pressure-area isotherms, ellipsometry, Brewster angle microscopy, and constant-area surface pressure relaxation. The azacrown ether molecules aggregate in the monolayer, which significantly stabilizes the film against dissolution. Mixed azacrown ether-palmitic acid monolayers were also characterized; results suggest that at high compression the two molecules interact repulsively. The influence of Cu(II) ions present in the aqueous subphase on the single components and mixed monolayer characteristics was also studied.  相似文献   

16.
The two-dimensional phase diagram of phospholipid monolayers at air-water interfaces has been constructed from Langmuir compression isotherms. The coexistence region between the solid and fluid phases of the monolayer ends at the critical temperature of the transition. The small-scale lateral structure of the monolayers has been imaged by atomic force microscopy in the nm to microm range at distinct points in the phase diagram. The lateral structure is immobilized by transferring the monolayer from an air-water interface to a solid mica support using Langmuir-Blodgett techniques. A transfer protocol that ensures preservation of the structure during the transfer has been established. The lateral structure reflecting the density fluctuations has been visualized and quantitatively characterized as the monolayer passes through a series of first-order phase transitions and ultimately approaches a critical point. The critical behavior inferred from the thermodynamic as well as the structural data is found to be consistent with the 2D Ising universality class. Additional results are presented demonstrating the presence of striped phases and coexisting domains in binary mixtures.  相似文献   

17.
A trisilanol polyhedral oligomeric silsesquioxane (POSS), trisilanolcyclohexyl-POSS (TCyP), has recently been reported to undergo a series of phase transitions from traditional Langmuir monolayers to unique rodlike hydrophobic aggregates in multilayer films that are different from "collapsed" morphologies seen in other systems at the air/water interface. This paper focuses on the phase transitions and morphology of films varying in average thickness from monolayers to trilayers and the corresponding viscoelastic properties of trisilanolcyclohexyl-POSS molecules at the air/water interface by means of surface pressure-area per molecule (Pi-A) isotherms, Brewster angle microscopy (BAM), and interfacial stress rheometry (ISR) measurements. The morphology studies by BAM reveal that the TCyP monolayer can collapse into different 3D structures by homogeneous or heterogeneous nucleation mechanisms. For homogeneous nucleation, analysis by Vollhardt et al.'s nucleation and growth model reveals that TCyP collapse is consistent with instantaneous nucleation with hemispherical edge growth at Pi = 3.7 mN.m(-1). Both surface storage (Gs') and loss (Gs") moduli obtained by ISR reveal three different non-Newtonian flow regimes that correlate with phase transitions in the Pi-A isotherms: (A) A viscous liquidlike "monolayer"; (B) a "biphasic regime"between a liquidlike viscous monolayer and a more rigid trilayer; and (C) an elastic solidlike "trilayer". These observations provide interesting insights into collapse mechanisms and structures in Langmuir films.  相似文献   

18.
The lateral intermolecular forces between phospholipids are of particular relevance to the behavior of biomembranes, and have been approached via studies of monolayer isotherms at aqueous interfaces, mostly restricted to air/water (A/W) systems. For thermodynamic properties, the oil/water (O/W) interface has major advantages but is experimentally more difficult and less studied. A comprehensive reanalysis of the available thermodynamic data on spread monolayers of phosphatidyl cholines (PC) and phosphatidyl ethanolamines (PE) at O/W interfaces is conducted to identify the secure key features that will underpin further development of molecular models. Relevant recourse is made to isotherms of single-chain molecules and of mixed monolayers to identify the contributions of chain-chain interactions and interionic forces. The emphasis is on the properties of the phase transitions for a range of oil phases. Apparent published discrepancies in thermodynamic properties are resolved and substantial agreement emerges on the main features of these phospholipid monolayer systems. In compression to low areas, the forces between the zwitterions of like phospholipids are repulsive. The molecular model for phospholipid headgroup interactions developed by Stigter et al. accounts well for the virial coefficients in expanded phospholipid O/W monolayers. Inclusion of the changes in configuration and orientation of the zwitterion headgroups on compression, which are indicated by the surface potentials in the phase transition region, and inclusion of the energy of chain demixing from the oil phase will be required for molecular modeling of the phase transitions.  相似文献   

19.
The paper presents a thorough characteristics of Langmuir monolayers formed at the air/water interface by a polyene macrolide antibiotic-nystatin. The investigations are based on the analysis of pi/A isotherms recorded for monolayers formed by this antibiotic at different experimental conditions. A significant part of this work is devoted to the stability and relaxation phenomena. It has been found that nystatin forms at the air/water interface monolayers of the LE state. A plateau region, observed during the course of the isotherm compression, is suggested to be due to the orientational change of nystatin molecules from horizontal to vertical position. Quantitative analysis of the desorption of the monolayer material into bulk water indicates that the solubility of nystatin monolayers increases with surface pressure. At low surface pressures, the desorption of nystatin from a monolayer is controlled both by dissolution and by diffusion. However, at the plateau and in the post-plateau region, the desorption does not achieve a steady state and the monolayer is less stable than in the pre-plateau region. However, the presence of membrane lipids, even at a low mole fraction, considerably increases the stability of nystatin monolayers. This enables the application of the Langmuir monolayer technique to study nystatin in mixture with cellular membrane components, aiming at verifying its mode of action and the mechanism of toxicity.  相似文献   

20.
We report on the interesting interfacial behavior of oligoethylene glycol or OEGylated linear dendron monolayers at the air-water interface as a function of (a) carbazole dendron generation, (b) the length of the OEG units, and (c) the surface pressure applied upon compression. Surface pressure-area isotherms, hysteresis studies, and isobaric creep measurement revealed a structure-property relationship consistent with the hydrophilic-lipophilic balance of a linear dendron with the OEG group serving as the surface anchor to the water subphase. AFM studies revealed that all the OEGylated carbazole dendrons self-assemble into spherical morphology at low surface pressures but form ribbonlike structures as the surface pressure is increased. This nanostructuring is primarily imparted by the increase in van der Waals forces with increasing amount of carbazole units per dendron generation on a hydrophilic mica surface. Further, electrochemical cross-linking of the carbazole molecules by cyclic voltammetery (CV) on doped Si wafer has enabled the formation of an LB film monolayer with a secondary level of organization in the monolayer imparted by the inter- and intramolecular cross-linking among the carbazole units. This study should provide a basis for monolayer film materials based on combining the LB technique and electrochemical cross-linking for nanostructuring superstructures at the air-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号