首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A silica-based monolithic stationary phase with mixed-mode of reversed phase (RP) and weak anion-exchange (WAX) for capillary electrochromatography (CEC) has been prepared. The mixed-mode monolithic silica column was prepared using the sol–gel technique and followed by a post-modification with hexadecyltrimethoxysilane (HDTMS) and aminopropyltrimethoxysilane (APTMS). The amino groups on the surface of the stationary phase were used to generate a substantial anodic EOF as well as to provide electrostatic interaction sites for charged compounds at low pH. A cathodic EOF was observed at pH above 7.3 due to the full ionization of residual silanol groups and the suppression in the ionization of amino groups. A variety of analytes were used to evaluate the electrochromatographic characterization and column performance. The monolithic stationary phase exhibited RP chromatographic behavior toward neutral solutes. The model anionic solutes were separated by the mixed-mode mechanism, which comprised RP interaction, WAX, and electrophoresis. Symmetrical peaks can be obtained for basic solutes because positively charged amino groups can effectively minimize the adsorption of positively charged analytes to the stationary phase.  相似文献   

2.
This article describes a new complementary peptide separation and purification concept that makes use of a novel mixed-mode reversed-phase/weak anion-exchange (RP/WAX) type stationary phase. The RP/WAX is based on N-(10-undecenoyl)-3-aminoquinuclidine selector, which is covalently immobilized on thiol-modified silica particles (5 microm, 100 A pore diameter) by radical addition reaction. Remaining thiol groups are capped by radical addition with 1-hexene. This newly developed separation material contains two distinct binding domains in a single chromatographic interactive ligand: a lipophilic alkyl chain for hydrophobic interactions with lipophilic moieties of the solute, such as in the reversed-phase chromatography, and a cationic site for anion-exchange chromatography with oppositely charged solutes, which also enables repulsive ionic interactions with positively charged functional groups, leading to ion-exclusion phenomena. The beneficial effect that may result from the combination of the two chromatographic modes is exemplified by the application of this new separation material for the chromatographic separation of the N- and C-terminally protected tetrapeptide N-acetyl-Ile-Glu-Gly-Arg-p-nitroanilide from its side products. Mobile phase variables have been thoroughly investigated to optimize the separation and to get a deeper insight into the retention and separation mechanism, which turned out to be more complex than any of the individual chromatography modes alone. A significant anion-exchange retention contribution at optimal pH of 4.5 was found only for acetate but not for formate as counter-ion. In loadability studies using acetate, peptide masses up to 200 mg could be injected onto an analytical 250 mm x 4 mm i.d. RP/WAX column (5 microm) still without touching bands of major impurity and target peptide peaks. The corresponding loadability tests with formate allowed the injection of only 25% of this amount. The analysis of the purified peptide by capillary high-performance liquid chromatography (HPLC)-UV and HPLC-ESI-MS employing RP-18 columns revealed that the known major impurities have all been removed by a single chromatographic step employing the RP/WAX stationary phase. The better selectivity and enhanced sample loading capacity in comparison to RP-HPLC resulted in an improved productivity of the new purification protocol. For example, the yield of pure peptide per chromatographic run on RP/WAX phase was by a factor of about 15 higher compared to the standard gradient elution RP-purification protocol.  相似文献   

3.
Retention properties of 79 fungal metabolites (including neutral, acidic, basic, and amphoteric compounds) were evaluated on distinct mixed-mode reversed-phase/weak anion exchange (RP/WAX)-type stationary phases by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) in gradient as well as in isocratic elution mode. The RP/WAX separation materials were prepared by functionalising thiol-modified silica with N-(10-undecenoyl)-3-aminoquinuclidine and N-(10-undecenoyl)-3-alpha-aminotropane, respectively. To evaluate complementarity in chromatographic selectivity the physico-chemically heterogeneous solute set was analysed also on a RP phase (C(18)), an amino-type WAX phase, and a commercially available RP/WAX-like mixed-mode phase. Analytes may interact with the RP/WAX ligands via (attractive/repulsive) ionic, RP-like hydrophobic, as well as hydrophilic (HILIC) retention mechanisms. Individual interactive increments were found to be basically controlled by the nature and amount of organic modifier, pH value of eluent, and ionic strength of buffer additives. It could be demonstrated that RP/WAX columns offer the potential to separate compounds by exploiting a combination of various chromatographic interaction modes, which is not accessible with conventional RP and WAX columns. Such multi-modal properties increase both versatility and degrees of freedom for adjustment of chromatographic selectivity. For example, highly polar mycotoxins such as moniliformin were well retained on RP/WAX-type phases without compromising RP-selectivity for neutral (e.g. aflatoxins) and most basic solutes (e.g. epimer separation of ergot alkaloids) under fully MS-compatible conditions like a hydro-organic eluent with acetonitrile as organic modifier and an acetic acid/ammonium acetate buffer. Flexibility of the employed mixed-mode separation materials may be of value particularly for LC-ESI-MS/MS-based bioanalytics involving analytes with widely varying physico-chemical properties or applications prone to matrix effects.  相似文献   

4.
Ding G  Da Z  Yuan R  Bao JJ 《Electrophoresis》2006,27(17):3363-3372
A silica-based CEC monolithic column with mixed modes of RP and weak anion-exchange (WAX) was successfully prepared by using the sol-gel technique at mild temperature. The synthesizing procedure was optimized by changing the ratios of tetraethoxysilane (TEOS), aminopropyltriethoxysilane (APTES), and octyltriethoxysilane (C(8)-TEOS) in the mixture. While serving as WAX group, the amino group dominated the charge on the surface of the capillary column and generated an EOF from cathode to anode at low pH. At pH above 7.5, a cathodic EOF was observed due to the full ionization of silanol group and the suppression in the ionization of amino group. The morphology of monolithic columns was examined by SEM, and the performance of column was evaluated in detail by separating different kinds of compounds. As expected, the monolithic column exhibited RP chromatographic behavior for neutral solutes. Fast and efficient separation of six aromatic acids was obtained using acidic mobile phase with column efficiency up to 160,000 plates/m. Symmetrical peaks can be obtained for aromatic amines because positively charged amino groups on the surface can effectively minimize the adsorption of positively charged analytes to the stationary phase.  相似文献   

5.
Monolithic capillary columns were prepared by thermal initiated copolymerization of glycidyl methacrylate (GMA) and divinylbenzene (DVB) inside silanized 200 µm i.d. fused silica capillaries. Polymerization mixtures containing different amounts of porogen (1-decanol and tetrahydrofuran (THF)) and different ratios of monomer and crosslinker were used for synthesis. For characterization the pore size distribution profiles of the resulting monoliths were determined by mercury intrusion porosimetry. The morphology of the copolymer was investigated by scanning electron micrographs (SEM). A high linear dependence between flow rate and pressure drop was achieved which indicates that the polymer is pressure-stable even at high flow rates. After characterization the produced GMA-DVB monoliths, which contain reactive epoxide groups, were modified by reaction with diethylamine to obtain a poly(3-diethylamino-2-hydroxypropyl methacrylate-co-divinylbenzene) ion-exchange monolithic stationary phase. The synthesized monoliths contain ionizable amino groups that are useful for anion-exchange chromatography (AEC). Poly(3-diethylamino-2-hydroxypropyl methacrylate-co-divinylbenzene) monolithic columns allowed a fast and highly efficient separation of a homologous series of phosphorylated oligothymidylic acids [d(pT)12-18]. Since durability is an important parameter of chromatographic column characterization, the separation performance for d(pT)12-18 in a freshly produced capillary column and on the same column after 100 chromatographic runs was compared.  相似文献   

6.
Thermo-responsive monolithic materials   总被引:1,自引:0,他引:1  
One of the recent major improvements of HPLC was the introduction of monolithic silica columns, which have the advantage of faster separation and lower back pressure as compared to common silica beads. Here, we present an interesting alternative to such reversed-phase monolithic columns by a convenient coupling route of a thermo-responsive polymer to hydrophilic silica monoliths. Poly(N-isopropylacrylamide) (PNIPAM) was polymerized in solution via a reversible addition fragmentation chain transfer (RAFT) polymerization technique and coupled then in situ onto an amino-modified silica monolithic column. These columns were compared with RP-18 monolithic columns in the separation of steroids under isocratic condition in aqueous mobile phase. Separation is optimized just by changing the temperature, instead of changing the mobile phase composition.  相似文献   

7.
This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.  相似文献   

8.
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.  相似文献   

9.
A set of particulate silica-supported mixed-mode RP/weak anion-exchangers (RP/WAX) (obtained by bonding of N-undecenoylated 3-aminoquinuclidine, 3-aminotropane and 2-dimethylaminoethylamine as well as of N-butenoyl-(2S,4S,5R)-2-aminomethyl-5-[(2-octylthio)ethyl]-quinuclidine to thiol-modified silica) were chromatographically characterized in comparison to selected commercially available columns using two distinct isocratic elution modes, viz. an aqueous-rich RP-type elution mode (with 40% ACN and 60% buffer) as well as an organic solvent-rich hydrophilic interaction chromatography (HILIC)-type elution mode (95 and 90% ACN). The mixed-mode RP/WAX phases showed multimodal applicability, unlike a polar embedded RP material (Synergi Fusion RP), amino phases (Luna NH(2), BioBasic AX) or typical HILIC packings (ZIC-HILIC, TSKGel Amide-80). Principal component analysis (PCA) of the RP test data confirmed that the in-house developed RP/WAX columns as well as the Acclaim Mixed-Mode WAX-1 phase resemble each other in their chromatographic characteristics having slightly lower hydrophobic selectivity (alpha(CH2) of 1.5) than the tested Synergi Fusion RP (alpha(CH2) approximately 1.8). In contrast, a decrease in mixed-mode character due to lowered ion-exchange capacity and concomitantly increased RP-like behavior could be identified for other mixed-mode phases in the order of Obelisc R > Primesep B2 > Uptisphere MM3. PCA on HILIC data revealed that the RP/WAX phases behave dissimilar to TSKGel Amide-80, ZIC-HILIC and polysulfoethyl A under the chosen elution conditions. Hence, they may be regarded as complementary to these commercial stationary phases with applicability profiles for hydrophilic but also hydrophobic solutes.  相似文献   

10.
Organic polymer monolithic capillary columns were prepared in fused-silica capillaries by radical co-polymerization of ethylene dimethacrylate and butyl methacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in the presence of various amounts of porogenic solvent mixtures and different concentration ratios of monomers and 1-propanol, 1,4-butanediol, and water. The chromatographic properties of the organic polymer monolithic columns were compared with those of commercial silica-based particulate and monolithic capillary and analytical HPLC columns. The tests included the determination of H-u curves, column permeabilities, pore distribution by inversed-SEC measurements, methylene and polar selectivities, and polar interactions with naphthalenesulphonic acid test samples. Organic polymer monolithic capillary columns show similar retention behaviour to chemically bonded alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have lower methylene selectivities and do not show polar interactions with sulphonic acids. The commercial capillary and analytical silica gel-based monolithic columns showed similar selectivities and provided symmetrical peaks, indicating no significant surface heterogeneities. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra-column contributions. With 0.3 mm ID capillary columns, corrections for extra-column volume contributions are sufficient, but to obtain true information on the efficiency of 0.1 mm ID capillary columns, the experimental bandwidths should be corrected for extra-column contributions to peak broadening.  相似文献   

11.
The following particulate and monolithic silica columns were implemented in a fully automated and flexible multidimensional LC/MS system with integrated sample clean-up, to perform the analysis of endogeneous peptides from filtered urine and plasma samples: restricted access sulphonic acid strong cation-exchanger (RAM-SCX) for sample clean-up, RP 18 Chromolith guard columns as trap columns and 100 microm I.D. monolithic RP 18 fused silica capillary columns as last LC dimension. The results show sufficient overall system reproducibility and repeatability. Implementation of monolithic silica columns added an additional flexibility with respect to flow rate variation and adjustment due to the low column back pressures. Also, monolithic columns showed a lower clogging rate in long-term usage for biological samples as compared to particulate columns. The applied system set-up was tested to be useful for the routine peptide screening in search of disease biomarkers.  相似文献   

12.
Porous hybrid organo‐silica monoliths have been prepared inside pretreated 100 μm id UV transparent fused‐silica capillaries using simultaneous sol‐gel transition and polymerization of 3‐(methacryloyloxy)propyl trimethoxysilane in the presence of toluene as a porogen. The sol‐gel reaction was catalyzed by hydrochloric acid while various photoinitiators including azobisisobutyronitrile, 2,2‐dimethoxy‐2‐phenylacetophenone, and Irgacure 819 were used for the photopolymerization carried out under irradiation with UV light at a wavelength of 254 or 365 nm. The chromatographic performance of photopolymerized monolithic columns in RP liquid chromatographic mode was assessed with respect to the following metrics: column efficiency, methylene and steric selectivity, effect of silanol groups, van Deemter plot, permeability, and pore size distribution. Columns with an efficiency of up to 77 000 plates/m for benzene has been achieved at a flow velocity of 0.47 mm/s. The performance of photopolymerized hybrid monolithic column was compared to the performance of columns prepared via thermally initiated polymerization.  相似文献   

13.
Enzymes of several classes used in the formulations of cleaning products were characterized by trypsin digestion followed by HPLC with UV detection. A polymeric monolithic column (ProSwift) was used to optimize the separation of both the intact enzymes and their tryptic digests. This column was adequate for the quality control of raw industrial enzyme concentrates. Then, monolithic and microparticulate columns were compared for peptide analysis. Under optimized conditions, the analysis of tryptic digests of enzymes of different classes commonly used in the formulation of cleaning products was carried out. Number of peaks, peak capacity and global resolution were obtained in order to evaluate the chromatographic performance of each column. Particulate shell-core C18 columns (Kinetex, 2.6 μm) showed the best performance, followed by a silica monolithic column (Chromolith RP-18e) and the conventional C18 packings (Gemini, 5 μm or 3 μm). A polymeric monolithic column (ProSwift) gave the worst performances. The proposed method was satisfactorily applied to the characterization of the enzymes present in spiked detergent bases and commercial cleaners.  相似文献   

14.
Preparation methods of monolithic silica columns for HPLC including the surface modification were reviewed. Chemical modification methods recently reported to obtain stationary phases for reversed-phase (RP), chiral, ion-exchange, and hydrophilic interaction chromatography (HILIC) separations were discussed. Recent results related to preparation methods of monolithic silica were also covered. The characteristics and properties of silica monoliths and some applications of monolithic silica columns for different analytical and bioanalytical fields will be commented.  相似文献   

15.
We report a premier side-by-side comparison of two leading types of monolithic nano-LC column (silica-C(18), polystyrene) in shotgun proteomics experiments. Besides comparing the columns in terms of the number of peptides from a real-life sample (Arabidopsis thaliana chloroplast) that they identified, we compared the monoliths in terms of peak capacity and retention behavior for standard peptides. For proteomics applications where the mobile phase composition is constrained by electrospray ionization considerations (i.e., there is a restricted choice of ion-pairing modifiers), the polystyrene nano-LC column exhibited reduced identification power. The silica monolith column was superior in all measured values and compared very favorably with traditional packed columns. Finally, we investigated the performances of the monoliths at high flow rates in an attempt to demonstrate their advantages for high-throughput identification.  相似文献   

16.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   

17.
Silica-based monolithic columns were prepared for HPLC with systematic variations of the tetramethoxysilane (TMOS) and polyethylene oxide (PEO) content as reactants in a sol-gel process accompanied by phase separation. The resulting monoliths showed differences in the macropore and silica skeleton diameter as well as in the corresponding domain sizes (the sum of macropore and skeleton diameter). All monoliths were synthesized with a diameter of 4.6 mm and cladded with a suitable polyaryletheretherketone (PEEK) polymer in a standardized and optimized manner for the subsequent chromatographic evaluation of the resulting monolithic HPLC columns. The columns were tested under normal phase conditions using n-heptane/dioxane (95:5 v/v) as a mobile phase and 2-nitroanisole as a test compound for the determination of separation efficiency and permeability. Two different sets of columns were prepared: the first one in which the amount of PEO was stepwise decreased to yield monoliths with identical macropore volumes and variations in the domain sizes. The second group of materials was synthesized adjusting both TMOS and PEO quantities to yield monolithic columns with identical macropore diameters of about 1.80 microm but different skeleton diameters and macropore volumes. The chromatographic results suggest that an increase in the column performance cannot be achieved by just arbitrarily decreasing the domain size of a given column. From a certain point of "downsizing" the monolithic structure a loss of structural homogeneity can be observed, which is apparently responsible for a lower chromatographic performance.  相似文献   

18.
Commercially available silica‐based monolithic columns Chromolith RP‐8e, Chromolith RP‐18, and Chromolith HR RP‐18, and polymer‐based monolithic columns ProSwift RP‐1S, ProSwift RP‐2H, and ProSwift RP‐3U varying in pore size and bonded phase have been tested for the fast separation of selected sets of analytes. These mixtures of analytes included small molecules (uracil, caffeine, 1‐phenylethanol, butyl paraben, and anthracene), acylated insulins, and intact proteins (ribonuclease A, cytochrome C, transferrin, apomyoglobin, and thyroglobulin), and covered wide range of chemistries and sizes. Small molecules were well separated with a height equivalent to theoretical plate of 11–26 μm using silica‐based monolithic columns, while organic polymer‐based monoliths excelled in the fast sub 1 min baseline separations of large molecules. A peak capacity of 37 was found for separation of acylated insulins on Chromolith columns using a 3 min gradient at a flow rate of 3 ml/min. Poor recovery of proteins from Chromolith columns and significant peak tailing of small molecules using ProSwift columns were the major obstacles in using monolithic columns in those applications.  相似文献   

19.
A rapid and selective HPLC method using monolithic columns was developed for the separation and quantification of the principal amphetamines in ecstasy tablets. Three monolithic (Chromolith RP18e) columns of different lengths (25, 50 and 100 mm) were assessed. Validation studies including linearity, selectivity, precision, accuracy and limit of detection and quantification were carried out using the Chromolith SpeedROD, RP-18e, 50 mm x 4.6 mm column. Column backpressure and van Deemter plots demonstrated that monolithic columns provide higher efficiency at higher flow rates when compared to particulate columns without the loss of peak resolution. Application of the monolithic column to a large number of ecstasy tablets seized in Ireland ensured its suitability for the routine analysis of ecstasy tablets.  相似文献   

20.
A method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns. Also, the potential of ultra-high-pressure liquid chromatography is discussed in this context. In the HPLC mode, the best results were obtained with silica monoliths; in the CEC mode, the low-density methacrylate-ester-based monoliths showed the best performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号