首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Time dependent viscosity of concentrated alumina suspensions   总被引:4,自引:0,他引:4  
Viscometric investigations of concentrated aqueous alumina suspensions with particles smaller than 5 μm have been performed. Experimental flow curves indicate thixotropy in the shear rate interval between =20 and 640 s−1. In the range smaller than =200 s−1 we found pseudoplastic flow behavior, in the higher range the material shows dilatancy. The non-Newtonian behavior results from a small content of sodium aluminum oxide in the alumina suspension. This gives rise to interparticle forces that can drive the suspension into a gel-like state. The time scale of this process is some days. On the short-time scale of some hours the material ages slowly increasing moderately the apparent viscosity. Studying the relaxation process after a shear rate jump, the shear stress time dependency at constant shear rate follows an exponential law. There is a single particular relaxation time for each shear rate. The relaxation towards a steady state occurs asymptotically over some 103 s. Flow curves calculated from steady state data after relaxation processes are below the experimental flow curves which were measured during some 100 s. The flow curves follow the Herschel–Bulkley formula. The shape of the viscosity curves indicates changes of suspension structure at ca. =200 and 400 s−1. At constant shear rates in the interval between =400 and 450 s−1 the apparent viscosity of the alumina suspension fluctuates periodically in time in the same manner found for other suspensions. This effect is interpreted as periodic organization of agglomeration and deglomeration processes. Supposing, that the stabilisation energy of agglomerates is of the order of the energy introduced by the mechanical shear field, the observation of oscillations at =400 s−1 is in agreement with the drastic slope change in the viscosity curves.  相似文献   

3.
以聚合物驱油为背景,研究了部分水解聚丙烯酰胺(HPAM)和缔合型部分水解聚丙烯酰胺(AHPAM)水溶液的结构与流变性质的差别.通过粘度法和静态激光光散射法得到了所分析的聚丙烯酰胺的分子量,用动态激光光散射法和粘度法分析了特定AHPAM分子缔合形态,并用流变学法测定了AHPAM在地层温度与矿化度条件下的线性粘弹性与非线性流变特性.着重讨论了临界缔合浓度的概念,研究了结构和流变性质的关系,以及分析了缔合对聚合物驱油的可能影响.实验结果表明,AHPAM水溶液在宽浓度范围存在分子缔合;一般临界缔合浓度的概念实际反映在进入亚浓溶液范围分子间缔合的效应,剪切速率约为10 s-1时,剪切粘度突降数倍,反映缔合结构在剪切场中的变化,该现象在高缠结浓度下较不明显;拉伸粘度随拉伸速率变化与HPAM定性不同,该拉伸特性反映了疏水缔合近程作用的本质.  相似文献   

4.
In this work, we present an experimental methodology to investigate the dynamics under shear flow of a drop that is gelling as a consequence of a temperature quench. The experiments were carried out on the system water/gellan/kappa-carrageenan in the biphasic region of the phase diagram, the gellan-rich phase being used as the dispersed phase. Gelation was brought about by lowering the temperature during flow after steady state drop deformation had been reached. Simple shear flow was applied by using a parallel plate apparatus equipped with optical microscopy and image analysis, which made it possible to monitor drop shape evolution before, during, and after gelation. The onset of gelation trapped drop deformation, thus producing anisotropic particles. The fingerprint of gelation was the simultaneous tumbling of the drops, which rotated as rigid ellipsoids under the action of shear flow. Interfacial tension between the two equilibrium phases was determined at different times during the temperature quench by analyzing drop retraction upon cessation of flow. Up to gelation, no significant change was observed in the measured values.  相似文献   

5.
Conceptually, an imagined conformation ellipsoid is supposed to represent the shape of a polymerchain for polymer melts in flow fields and to be equivalent to the volume element in a mathematical sense incontinuum mechanics. A power law dependence of shear modulus of polymer melts on detC, referred to asenvelope volume, is proposed. Based on those assumptions and the non-linear relation of shear modulus, aphenomenological viscoelastic model is derived. The model is tested in simple shear flow, simpleelongational flow, oscillatory shear flow, and relaxation process after flow suddenly stopped. The resultsshow that the model works well to predict the change of internal structure and viscoelastic performance ofpolymer melts in flow fields.  相似文献   

6.
Phase transitions and the physical state of the hydroxypropyl cellulose-dimethylacetamide system under static conditions and in a shear field were studied by the cloud-point and polarized optical microscopy techniques with a polarization-photoelectric setup and a modified plasticorder. The deformation of solutions leads to a change in their structure and elevation of liquid-crystalline phase formation temperatures, a result that is due to the additional orientation of macromolecules in the flow direction. The ability of macromolecules to be oriented in a shear field decreases with an increase in the molecular mass of the polymer. The influence of deformation on phase transitions in hydroxypropyl cellulose solutions is nonmonotonic in character.  相似文献   

7.
We have conducted Stokesian dynamics simulations to investigate the dynamic properties of ferromagnetic colloidal dispersions subjected to a sinusoidal shear flow. Thick chain-like cluster formation is significantly influenced by an oscillatory shear flow even if the amplitude is relatively small, since the internal structures of thick chain-like clusters are highly sensitive to the change in the direction of the shear flow. The motion of thick chain-like clusters is out of phase to a sinusoidal shear rate, and the phase difference is strongly correlated with that of the viscosity and normal stress coefficients. The viscoelastic properties become more apparent with decreasing frequency of the oscillatory shear flow, since such properties have a strong relationship with the thick chain-like cluster formation. In other words, since thick chain-like clusters are more stable for the case of a smaller frequency shear flow, such stable clusters induce significant viscoelastic properties of ferromagnetic colloidal dispersions in a strong, applied magnetic field. Copyright 2000 Academic Press.  相似文献   

8.
Flocculation is commonly used in various solid-liquid separation processes in chemical and mineral industries to separate desired products or to treat waste streams. This paper presents an experimental technique to study flocculation processes in laminar tube flow. This approach allows for more realistic estimation of the shear rate to which an aggregate is exposed, as compared to more complicated shear fields (e.g. stirred tanks). A direct sampling method is used to minimize the effect of sampling on the aggregate structure. A combination of aggregate settling velocity and image analysis was used to quantify the structure of the aggregate. Aggregate size, density, and fractal dimension were found to be the most important aggregate structural parameters. The two methods used to determine aggregate fractal dimension were in good agreement. The effects of advective flow through an aggregate's porous structure and transition-regime drag coefficient on the evaluation of aggregate density were considered. The technique was applied to investigate the flocculation kinetics and the evolution of the aggregate structure of kaolin particles with an anionic flocculant under conditions similar to those of oil sands fine tailings. Aggregates were formed using a well controlled two-stage aggregation process. Detailed statistical analysis was performed to investigate the establishment of dynamic equilibrium condition in terms of aggregate size and density evolution. An equilibrium steady state condition was obtained within 90 s of the start of flocculation; after which no further change in aggregate structure was observed. Although longer flocculation times inside the shear field could conceivably cause aggregate structure conformation, statistical analysis indicated that this did not occur for the studied conditions. The results show that the technique and experimental conditions employed here produce aggregates having a well-defined, reproducible structure.  相似文献   

9.
Many non-Newtonian materials have viscosities proportional to a power of shear rate. Although, generally, such relationships are regarded as being empirical, it is shown that power-law behavior arises when structure change with shear rate tends to saturation and results in flow activation energy being inversely proportional to shear rate. A temperature-dependent power-law index is predicted as is observed. Viscosity measurements are presented for a 10% sodium carboxymethylcellulose solution. It was found that both activation entropy and enthalpy decreased with shear rate, the former producing a small shear thickening and the latter a dominant shear thinning contribution to flow.  相似文献   

10.
A rheometric method based on velocity profiling by optical coherence tomography (OCT) was used in the analysis of rheological and boundary layer flow properties of a 0.5% microfibrillated cellulose (MFC) suspension. The suspension showed typical shear thinning behaviour of MFC in the interior part of the tube, but the measured shear viscosities followed interestingly two successive power laws with an identical flow index (exponent) and a different consistency index. This kind of viscous behaviour, which has not been reported earlier for MFC, is likely related to a sudden structural change of the suspension. The near-wall flow showed existence of a slip layer of 2–12 μm thickness depending on the flow rate. Both the velocity profile measurement and the amplitude data obtained with OCT indicated that the slip layer was related to a concentration gradient appearing near the tube wall. Close to the wall the fluid appeared nearly Newtonian with high shear rates, and the viscosity approached almost that of pure water with decreasing distance from the wall. The flow rates given by a simple model that included the measured yield stress, viscous behavior, and slip behavior, was found to give the measured flow rates with a good accuracy.  相似文献   

11.
In the present study, we performed molecular dynamics simulations and investigated dynamical heterogeneity in a supercooled liquid under a steady shear flow. Dynamical heterogeneity can be characterized by three quantities: the correlation length ξ(4)(t), the intensity χ(4)(t), and the lifetime τ(hetero)(t). We quantified all three quantities by means of the correlation functions of the particle dynamics, i.e., the four-point correlation functions, which are extended to the sheared condition. Here, to define the local dynamics, we used two time intervals t = τ(α) and τ(ngp); τ(α) is the α-relaxation time, and τ(ngp) is the time at which the non-Gaussian parameter of the Van Hove self-correlation function is maximized. We discovered that all three quantities (ξ(4)(t), χ(4)(t), and τ(hetero)(t)) decrease as the shear rate γ of the steady shear flow increases. For the time interval t = τ(α), the scalings ξ(4)(τ(α))~γ(-0.08), χ(4)(τ(α))~γ(-0.26), and τ(hetero)(τ(α))~γ(-0.88) were obtained. The steady shear flow suppresses the heterogeneous structure as well as the lifetime of the dynamical heterogeneity. In addition, we demonstrated that all three quantities in the sheared non-equilibrium state can be mapped onto those in the equilibrium state through the α-relaxation time τ(α). This finding means that the same relation between τ(α) and three quantities holds in both the equilibrium state and the sheared non-equilibrium state and therefore proposes that the dynamical heterogeneity can play a similar role in the drastic change of τ(α) due to not only the temperature but also the shear rate.  相似文献   

12.
Lattice Boltzmann simulations are used to explore the behavior of liquid crystals subject to Poiseuille flow. In the nematic regime at low shear rates we find two possible steady-state configurations of the director field. The selected state depends on both the shear rate and the history of the sample. For both director configurations there is clear evidence of shear thinning, a decrease in the viscosity with increasing shear rate. Moreover, at very high shear rates or when the order parameter is large, the system transforms to a ‘log-rolling state’ with boundary layers that may exhibit oscillatory behavior.  相似文献   

13.
张洪斌 《高分子科学》2010,28(4):657-666
<正>The effect of pre-shear flow on the subsequent crystallization process of polymeric melt was investigated and a flow-induced crystallization(FIC) model based on the conformation tensor incorporating the pre-shear effect was proposed. The model is capable of predicting the overshoot phenomena of the stress and the flow-induced free energy change of the polymeric system at high pre-shear rates.Under the condition of flow,the increase in the activated nuclei number was contributed by the flow-induced free energy change,which showed an overwhelming effect on the nuclei formation during the pre-shear process at high shear rates.The half crystallization time(f_(1/2)) of polypropylene(PP) as functions of pre-shear rate and pre-shear time at different crystallization temperatures was predicted and compared with the experiment data.Both numerical and experimental results showed that t_(1/2) of PP decreased dramatically when the flow started but leveled off at long times.It was found that two transformation stages in t_(1/2) existed within a wide range of shear rates.For the first stage where the melting polymer experienced a relatively weak shear flow,the acceleration of crystallization kinetics was mainly contributed by the steady value of free energy change while in the second stage for high shear rates,strong overshoot in flow-induced free energy change occurred and the crystallization kinetics was thus significantly enhanced.The overshoots in stress and flow-induced free energy change reflected an important role of flow on the primary nucleation especially when the flow was strong enough.  相似文献   

14.
Viscoelastic properties of model immiscible blend were studied here under steady state condition at different initial conditions and transient flow conditions. The flow‐induced microstructure has been studied on these model blends. For this system, the elastic properties of the blend are mainly governed by the interface. Measurement of the dynamic modulus and of the first normal stress difference, both reflecting this enhanced elasticity, have been used to prove the blend morphology. The dynamic moduli after cessation of shear flow, the mean diameter of the disperse phase as generated by the shear flow, have been calculated using the model of Palierne. A procedure based on a direct fitting of the dynamic moduli with the model is compared with the one that uses a weight relaxation spectrum. On the other hand, the steady state normal stress data have been related to the morphology of the blend by means of Doi and Ohta model. The specific interfacial area is found to be inversely proportional to the ratio of interfacial tension over shear stress for the blend. The flow behavior during transient shear flow was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3519–3533, 2005  相似文献   

15.
The crystallization behavior of iPP in composites with PET, Nylon-6 and its own fibers under various conditions was studied using an optical microscope equipped with a hot stage. The results show that the nucleation capacity of PET and Nylon-6 fibers towards the iPP matrix is mainly controlled by the shear flow of the iPP matrix during sample preparation. When the composites were prepared at a temperature where the iPP was kept in its supercooled state, the nucleation of iPP on the PET and Nylon-6 fiber surfaces was enhanced due to the shearing of the iPP melts caused by introduction of the fibers. The nucleation was markedly reduced by keeping the composites at the fiber introduction temperature for a short time to relax the shear flow of the iPP matrix. The nucleation of iPP on its own fiber, however, is mainly related to the nature of the iPP fiber itself. No detectable morphological change of iPP on its own fiber can be identified under all thermal conditions used in this study.  相似文献   

16.
The generalized Boltzmann equation for simple dense fluids gives rise to the stress tensor evolution equation as a constitutive equation of generalized hydrodynamics for fluids far removed from equilibrium. It is possible to derive a formula for the non-Newtonian shear viscosity of the simple fluid from the stress tensor evolution equation in a suitable flow configuration. The non-Newtonian viscosity formula derived is applied to calculate the non-Newtonian viscosity as a function of the shear rate by means of statistical mechanics in the case of the Lennard-Jones fluid. For that purpose we have used the density-fluctuation theory for the Newtonian viscosity, the modified free volume theory for the self-diffusion coefficient, and the generic van der Waals equation of state to compute the mean free volume appearing in the modified free volume theory. Monte Carlo simulations are used to calculate the pair-correlation function appearing in the generic van der Waals equation of state and shear viscosity formula. To validate the Newtonian viscosity formula obtained we first have examined the density and temperature dependences of the shear viscosity in both subcritical and supercritical regions and compared them with molecular-dynamic simulation results. With the Newtonian shear viscosity and thermodynamic quantities so computed we then have calculated the shear rate dependence of the non-Newtonian shear viscosity and compared it with molecular-dynamics simulation results. The non-Newtonian viscosity formula is a universal function of the product of reduced shear rate (gamma*) times reduced relaxation time (taue*) that is independent of the material parameters, suggesting a possibility of the existence of rheological corresponding states of reduced density, temperature, and shear rate. When the simulation data are reduced appropriately and plotted against taue*gamma* they are found clustered around the reduced (universal) non-Newtonian viscosity formula. Thus we now have a molecular theory of non-Newtonian shear viscosity for the Lennard-Jones fluid, which can be implemented with a Monte Carlo simulation method for the pair-correlation function.  相似文献   

17.
In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.  相似文献   

18.
Summary: Back-stress is the equilibrium stress and represents conditions under which relaxation events in the material stop and the material can carry an applied load indefinitely without a change in strain. In most models for glassy polymers, back-stress plays a central role since relaxation in materials is closely related to the distance of the current conditions from equilibrium. A number of these models that are commonly used for modeling glassy polymers use a modeling structure similar to large deformation plasticity. The flow rule for the plastic strain in these models are directly connected to the “over-stress,” a properly invariant difference between the stress and the back-stress. The importance of correctly evaluating the back-stress to use in these models is clear. For this class of models, the authors have recently developed a method for directly calculating the back-stress under shear deformations. This method is based on evaluating the slope of the stress-strain response under conditions of similar elastic and plastic strain, but different strain rates. Since plastic flow goes to zero at equilibrium, the back-stress can be found by locating points of zero plastic strain rate. Using the proposed method, the back-stress in glassy polycarbonate has been evaluated under shear in isothermal tests going from room temperature to 120 °C, just below the glass transition temperature for polycarbonate. The proposed method provided a full map of the back-stress for polycarbonate over a large range of shear strain and temperature.  相似文献   

19.
Summary The shear orientation of a micellar hexagonal liquid crystalline phase was investigated by small-angle neutron scattering. The hexagonal phase in the quiescent state showed a symmetrical scattering pattern typical of a polydomain structure. Enhanced scattering along the flow direction was observed during shear and the anisotropy of scattering intensity became stronger with increasing shear rate. The anisotropic scattering pattern corresponds to an orientation perpendicular to the flow direction and can be interpreted as a log-rolling state. The oriented sample did not relax after cessation of shear. The results from small-angle neutron scattering confirm data obtained previously from rheo-small angle light scattering measurements and are discussed in comparison to shear alignment of lyotropic liquid crystalline polymer solutions.  相似文献   

20.
Phase behavior of hydroxypropylcellulose (HPC) in a mixed solvent of glycerol and water was investigated by two different rheological methods: rheooptical birefringence measurement in an elongational flow field and viscometric measurement in a shear flow field. The association process of the HPC chain during phase separation observed by the elongational flow birefringence method was also investigated by the shear viscometric method. The temperature dependence of chain rigidity was determined by measuring the intrinsic viscosity, and change in the conformation was investigated by observing elongational flow birefringence over the temperature range from the one‐phase to inside a phase boundary. The results focus on the molecular process of phase separation. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1976–1986, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号