首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
We previously reported that two analogues of the Photoactive Yellow Protein chromophore, trans-p-hydroxycinnamic acid (pCA(2-)) and its amide derivative (pCM-) in their deprotonated forms, undergo a trans-cis photoisomerization whereas the thioester derivative, trans-p-hydroxythiophenyl cinnamate (pCT-), does not. pCT- is also the only one to exhibit a short-lived intermediate on its excited-state deactivation pathway. We here further stress the existence of two different relaxation mechanisms for these molecules and examine the reaction coordinates involved. We looked at the effect of the solvent properties (viscosity, polarity, solvation dynamics) on their excited-state relaxation dynamics, probed by ultrafast transient absorption spectroscopy. Sensitivity to the solvent properties is found to be larger for pCT- than for pCA(2-) and pCM-. This difference is considered to reveal that either the relaxation pathway or the reaction coordinate is different for these two classes of analogues. It is also found to be correlated to the electron donor-acceptor character of the molecule. We attribute the excited-state deactivation of analogues bearing a weaker acceptor group, pCA(2-) and pCM-, to a stilbene-like photoisomerization mechanism with the concerted rotation of the ethylenic bond and one adjacent single bond. For pCT-, which contains a stronger acceptor group, we consider a photoisomerization mechanism mainly involving the single torsion of the ethylenic bond. The excited-state deactivation of pCT- would lead to the formation of a ground-state intermediate at the "perp" geometry, which would return to the initial trans conformation without net isomerization.  相似文献   

2.
Transient absorption spectroscopy with subpicosecond laser excitation is used to probe the primary photoinduced processes in two ester analogues (linear and cyclic) of the Photoactive Yellow Protein (PYP) chromophore in solution. The PYP chromophore is the thioester derivative of the deprotonated trans-4-hydroxycinnamic acid. The results found for the ester analogues are compared to those previously obtained for the deprotonated trans-4-hydroxycinnamic acid and its amide and thioester derivatives. Special attention is paid to the role of the electron donor–acceptor character of the chromophore substituents and of the molecular flexibility on the excited-state relaxation pathway and kinetics. Solvent viscosity and polarity effects on the kinetics are also analyzed. Two hypothetical relaxation pathways involving a one-bond flip mechanism are proposed to explain the observation of a transient species in the course of the excited-state relaxation of the analogues bearing the stronger electron-acceptor substituents. In the first one, the intermediate is described as a perp ground state, whereas the second one involves a twisted excited state where the conformation of the ethylenic bond deviates from 90°. In both cases, the relaxation of the transient state may lead or not to the cis isomer.  相似文献   

3.
4.
《Chemical physics letters》1987,140(3):306-310
Using independently tunable pump and probe pulses in the infrared, time- and frequency-resolved spectroscopy of vibrationally excited, polyatomic molecules in liquids is demonstrated for the first time. Experimental data are presented for CHBr3, measuring the population lifetime via excited-state absorption of the CH-stretching mode; for larger probe delay, the non-equilibrium population of intermediate vibrational levels in the relaxation ladder of bromoform is observed.  相似文献   

5.
We have applied femtosecond pump-probe spectroscopy to investigate the excited-state dynamics of umecyanin from horseradish roots, by exciting its 600-nm ligand-to-metal charge-transfer band with a 15-fs pulse and probing over a broad range in the visible region. The decay of the pump-induced ground-state bleaching is modulated by clearly visible oscillations and occurs exponentially with a time constant depending on the observed spectral component of the transmission difference signal, ranging from 270 fs up to 700 fs. The slower decaying process characterizes the spectral component corresponding to the metal-to-ligand charge-transfer transition. The excited-state decay rate is significantly lower than in other blue copper proteins, probably because of the larger energy gap between ligand- and metal-based orbitals in umecyanin. Wavelength dependence of the recovery times could be due to either the excitation of several transitions or the occurrence of intramolecular vibrational relaxation within the excited state. We also find evidence of a hot ground-state absorption, at 700 nm, persisting for several picoseconds. The vibrational coherence induced by the ultrashort pump pulse allows vibrational activity to be observed, mainly in the ground state, as expected in a system with fast excited-state decay. However, we find evidence of a rapidly damped oscillation, which we assign to the excited state. Finally, the Fourier transform of the oscillatory component of the signal presents additional bands in the low-frequency region which are assigned to collective motions of the protein.  相似文献   

6.
Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to examine the photoisomerization dynamics in the excited state of bacteriorhodopsin. Near-IR stimulated emission is observed in the FSRS probe window that decays with a 400-600-fs time constant. Additionally, dispersive vibrational lines appear at the locations of the ground-state vibrational frequencies and decay with a 260-fs time constant. The dispersive line shapes are caused by a nonlinear effect we term Raman initiated by nonlinear emission (RINE) that generates vibrational coherence on the ground-state surface. Theoretical expressions for the RINE line shapes are developed and used to fit the spectral and temporal evolution of the spectra. The rapid 260-fs decay of the RINE peak intensity, compared to the slower evolution of the stimulated emission, indicates that the excited-state population moves in approximately 260 fs to a region on the potential energy surface where the RINE signal is attenuated. This loss of RINE signal is best explained by structural evolution of the excited-state population along multiple low-frequency modes that carry the molecule out of the harmonic photochemically inactive Franck-Condon region and into the photochemically active geometry.  相似文献   

7.
The photoinduced excited-state processes in 1,1'-diethyl-2,2'-cyanine iodine are investigated using femtosecond time-resolved pump-probe spectroscopy. Using a broad range of probe wavelengths, the relaxation of the initially prepared excited-state wavepacket can be followed down to the sink region. The data directly visualize the directed downhill motion along the torsional reaction coordinate and suggest a barrierless excited-state isomerization in the short chain cyanine dye. Additionally, ultrafast ground-state hole and excited-state hole replica broadening is observed. While the narrow excited-state wavepacket broadens during pump-probe overlap, the ground-state hole burning dynamics takes place on a significantly longer time-scale. The experiment reported can be considered as a direct monitoring of the shape and the position of the photoprepared wavepacket on the excited-state potential energy surface.  相似文献   

8.
We report a novel type of photon echo, the relaxed two-color stimulated echo, in the molecular mixed crystal of pentacene in naphthalene. A prerequisite to observation of this type of echo is that the inhomogeneous broadening on the selected transitions be correlated. The echo is used to study the picosecond vibrational deactivation of some excited-state vibrations of pentacene. Evidence for intermediate levels in the relaxation pathway is presented.  相似文献   

9.
Steady-state and time-resolved infrared spectroscopy of the azide (N(3)-) anion has been used to characterize aqueous mixtures both with the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]) and with dimethyl sulfoxide (DMSO). In the DMSO-water mixtures, two anion vibrational bands are observed for low water mole fractions (0 > X(w) > 0.25), which indicates a heterogeneous ion solvation environment. The band at 2000 cm(-1) observed for neat DMSO does not shift but decreases in amplitude as the amount of water is increased. Another band appears at slightly higher frequency at low X(w) (=0.05). As the amount of water is increased, this band shifts to higher frequency and becomes stronger and is attributed to azide with an increasing degree of hydration. At intermediate and high X(w), a single band is observed that shifts almost linearly with water mole fraction toward the bulk water value. The heterogeneity is evident from the infrared pump-probe studies in which the decay times depend on probe frequency at low mole fraction. For the azide spectra in IL-water mixtures, a single azide band is observed for each mole fraction mixture. The azide band shifts almost linearly with mole fraction, indicating nearly ideal mixing behavior. As with the DMSO-water mixtures, the time-resolved IR decay times are probe-frequency-dependent at low mole fraction, again indicating heterogeneous solvation. In both the DMSO and IL mixtures with water, the relaxation times are slower than would be expected from ideal mixing, suggesting that vibrational relaxation of azide is more sensitive than its vibrational frequency to the solvent structure. The results are discussed in terms of preferential solvation and the degree to which the azide shift and vibrational relaxation depend on the degree of water association in the mixtures.  相似文献   

10.
11.
The ultrafast excited-state dynamics underlying the receptor state photorecovery is resolved in the M100A mutant of the photoactive yellow protein (PYP) from Halorhodospira halophila. The M100A PYP mutant, with its distinctly slower photocycle than wt PYP, allows isolation of the pB signaling state for study of the photodynamics of the protonated chromophore cis-p-coumaric acid. Transient absorption signals indicate a subpicosecond excited-state proton-transfer reaction in the pB state that results in chromophore deprotonation prior to the cis-trans isomerization required in the photorecovery dynamics of the pG state. Two terminal photoproducts are observed, a blue-absorbing species presumed to be deprotonated trans-p-coumaric acid and an ultraviolet-absorbing protonated photoproduct. These two photoproducts are hypothesized to originate from an equilibrium of open and closed folded forms of the signaling state, I(2) and I(2)'.  相似文献   

12.
The excited-state dynamics of protochlorophyllide a, a porphyrin-like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase, a precursor of chlorophyll biosynthesis, is studied by femtosecond absorption spectroscopy in a variety of solvents, which were chosen to mimic different environmental conditions in the oxidoreductase complex. In the polar solvents methanol and acetonitrile, the excited-state dynamics differs significantly from that in the nonpolar solvent cyclohexane. In methanol and acetonitrile, the relaxation dynamics is multiexponential with three distinguishable time scales of 4.0-4.5 ps for vibrational relaxation and vibrational energy redistribution of the initially excited S1 state, 22-27 ps for the formation of an intermediate state, most likely with a charge transfer character, and 200 ps for the decay of this intermediate state back to the ground state. In the nonpolar solvent cyclohexane, only the 4.5 ps relaxational process can be observed, whereas the intermediate intramolecular charge transfer state is not populated any longer. In addition to polarity, solvent viscosity also affects the excited-state processes. Upon increasing the viscosity by adding up to 60% glycerol to a methanolic solution, a deceleration of the 4 and 22 ps decay rates from the values in pure methanol is found. Apparently not only vibrational cooling of the S1 excited state is slowed in the more viscous surrounding, but the formation rate of the intramolecular charge transfer state is also reduced, suggesting that nuclear motions along a reaction coordinate are involved in the charge transfer. The results of the present study further specify the model of the excited-state dynamics in protochlorophyllide a as recently suggested (Chem. Phys. Lett. 2004, 397, 110).  相似文献   

13.
Donor-substituted triarylboranes are investigated by femtosecond absorption spectroscopy to study the influence of molecular symmetry on solvation. In solvents of varying polarity and differently fast solvation response, the solvation dynamics of a highly symmetric triple carbazole-substituted triarylborane (TCB) is compared to a single carbazole-substituted triarylborane (CB). The decomposition of the transient absorption spectra allows us to measure the solvation time by means of the time-dependent solvatochromic shift of the excited-state absorption (ESA) and the stimulated emission (SE). For all polar solvents under study we find an accelerated solvation process for TCB compared to the less symmetric CB. The difference is particularly large for solvents with a slow response. In order to explain these findings we propose that the electronic excitation is mobile in the symmetric molecule and can change between the three carbazole chromophores probably by a hopping mechanism. The excited-state dipole moment of TCB can thereby respond to the solvent relaxation and changes its direction according to the local field of the solvation shell. Thus, in a symmetric solute the possibility of an intramolecular charge delocalization over equivalent sites accelerates the approach of the minimum-energy configuration.  相似文献   

14.
A low-lying segment of the intersection space (IS) between the excited-state and the ground-state energy surfaces of a retinal chromophore model has been mapped using ab initio CASSCF computations. Analysis of the structural relationship between the computed IS cross-section and the excited state Z --> E isomerization path shows that these are remarkably close both in energy and in structure. Indeed, the IS segment and the Z --> E path remain roughly parallel and merge only when the double bond reaches a 70 degree twisting. This finding supports the idea that, in certain chromophores, a more extended segment of IS, and not a single conical intersection, contributes to the decay to the ground state.  相似文献   

15.
Picosecond time-resolved Stokes and anti-Stokes resonance Raman spectra of all-trans-beta-carotene are obtained and analyzed to reveal the dynamics of excited-state (S(1)) population and decay, as well as ground-state vibrational relaxation. Time-resolved Stokes spectra show that the ground state recovers with a 12.6 ps time constant, in agreement with the observed decay of the unique S(1) Stokes bands. The anti-Stokes spectra exhibit no peaks attributable to the S(1) (2A(g) (-)) state, indicating that vibrational relaxation in S(1) must be nearly complete within 2 ps. After photoexcitation there is a large increase in anti-Stokes scattering from ground-state modes that are vibrationally excited through internal conversion. The anti-Stokes data are fit to a kinetic scheme in which the C=C mode relaxes in 0.7 ps, the C-C mode relaxes in 5.4 ps and the C-CH(3) mode relaxes in 12.1 ps. These results are consistent with a model for S(1)-S(0) internal conversion in which the C=C mode is the primary acceptor, the C-C mode is a minor acceptor, and the C-CH(3) mode is excited via intramolecular vibrational energy redistribution.  相似文献   

16.
Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.  相似文献   

17.
The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.  相似文献   

18.
Photochemical hole-burning spectroscopy was used to study the excited-state electronic structure of the 4-hydroxycinnamyl chromophore in photoactive yellow protein (PYP). This system is known to undergo a trans-to-cis isomerization process on a femtosecond-to-picosecond time scale, similar to membrane-bound rhodopsins, and is characterized by a broad featureless absorbance at 446 nm. Resolved vibronic structure was observed for the hole-burned spectra obtained when PYP in phosphate buffer at pH 7 was frozen at low temperature and irradiated with narrow bandwidth laser light at 431 nm. The approximate homogeneous width of 752 cm-1 could be calculated from the deconvolution of the hole-burned spectra leading to an estimated dephasing time of approximately 14 fs for the PYP excited-state structure. The resolved vibronic structure also enabled us to obtain an estimated change in the C=C stretching frequency, from 1663 cm-1 in the ground state to approximately 1429 cm-1 upon photoexcitation. The results obtained allowed us to speculate about the excited-state structure of PYP. We discuss the data for PYP in relation to the excited-state model proposed for the photosynthetic membrane protein bacteriorhodopsin, and use it to explain the primary event in the function of photoactive biological protein systems. Photoexcitation was also carried out at 475 nm. The vibronic structure obtained was quite different both in terms of the frequencies and Franck-Condon envelope. The origin of this spectrum was tentatively assigned.  相似文献   

19.
The excited-state dynamics of a donor-acceptor phenol-pyridinium biaryl cation was investigated in various solvents by femtosecond transient absorption spectroscopy and temperature dependent steady-state emission measurements. After excitation to a near-planar Franck-Condon delocalized excited S(1)(DE) state with mesomeric character, three fast relaxation processes are well resolved: solvation, intramolecular rearrangement leading to a twisted charge-shift (CSh) S(1) state with localized character, and excited-state proton transfer (ESPT) to the solvent leading to the phenoxide-pyridinium zwitterion. The proton transfer kinetics depends on the proton accepting character of the solvent whereas the interring torsional kinetics depends on the solvent polarity and viscosity. In nitriles, ESPT does not occur and interring twisting arises with no significant intrinsic barrier, but still slower than solvation. The CSh state is notably fluorescent. In alcohols and water, ESPT is faster than the solvation and DE → CSh relaxation processes and yields the zwitterion hot ground state, which strongly quenches the fluorescence. In THF, solvation and interring twisting occur first, leading to the fully relaxed, weakly fluorescent CSh state, followed by slow ESPT towards the zwitterion. At low temperature (77 K), the large viscous barrier of the solvent inhibits the torsional relaxation but ESPT still arises to some extent. Strong emission from the DE geometry and planar zwitterion is thus observed. Finally, quantum chemical calculations were performed on the ground and excited state of model phenol-pyridinium and phenoxide-pyridinium compounds. Strong S(1) state energy stabilization is predicted upon twisting in both cases, consistent with a fast relaxation towards the perpendicular geometry. A substantial S(0)-S(1) energy gap is still present for the twisted cationic species, which can explain the long-lived emission of the CSh state in nitriles. A quite different situation arises with the zwitterion for which the S(0)-S(1) energy gap predicted at the twisted geometry is very small. This suggests a close-lying conical intersection and can account for the strong fluorescence quenching observed in solvents where the zwitterion is produced by ESPT.  相似文献   

20.
Ultrafast relaxation dynamics of the excited singlet (S(1)) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51 degrees with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast "anti-twisting" motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90 degrees with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck-Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号