首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transparent superhydrophobic TiO2 film, prepared by spin-coating a TiO2 slurry on a glass substrate and modifying the resultant TiO2 film with fluoroalkylsilane molecules, was patterned by illumination with ultraviolet light through a photomask, producing a superhydrophobic/superhydrophilic surface micropattern with very small superhydrophilic areas, which we were able to selectively fill with alginate hydrogel.  相似文献   

2.
Nanoparticles of gold on TiO2 are highly chemoselective for the reduction of substituted nitroaromatics, such as nitrostyrene. By combining kinetics and in situ IR spectroscopy, it has been found that there is a preferential adsorption of the reactant on the catalyst through the nitro group. IR studies of nitrobenzene, styrene, and nitrostyrene adsorption, together with quantum chemical calculations, show that the nitro and the olefinic groups adsorb weakly on the Au(111) and Au(001) surfaces, and that although a stronger adsorption occurs on low-coordinated atoms in gold nanoparticles, this adsorption is not selective. On the other hand, an energetically and geometrically favored adsorption through the nitro group occurs on the TiO2 support and in the interface between the gold nanoparticle and the TiO2 support. Such preferential adsorption is not observed with nanoparticles of gold on silica which, contrary to the Au/TiO2 catalyst, is not chemoselective for the reduction of substituted nitroaromatic compounds. Therefore, the high chemoselectiviy of the Au/TiO2 catalyst can be attributed to a cooperation between the gold nanoparticle and the support that preferentially activates the nitro group.  相似文献   

3.
An organic dye JY1 bearing a nitro group was designed, synthesized and applied in DSCs. An unusual colour change was observed when the voltage applied to the device was reversed which was accompanied by a five-fold increase in the cell efficiency. We propose that applying a bias enabled the attachment of nitro groups to the TiO(2) surface.  相似文献   

4.
The preparation of superhydrophobic SiO(2) layers through a combination of a nanoscale surface roughness and a fluorination treatment is reported. Electrospraying SiO(2) precursor solutions that had been prepared by a sol-gel chemical route produced very rough SiO(2) layers. Subsequent fluorination treatment with a solution containing trichloro(1H,1H,2H,2H-perfluorooctyl)silane resulted in highly rough, fluorinated SiO(2) layers. The fluorinated rough SiO(2) layers exhibited excellent repellency toward various liquid droplets. In particular, water repellency of 168° was observed. On the bases of Cassie-Baxter and Young-Dupre equations, the surface fraction and the work of adhesion of the rough, fluorinated SiO(2) layers were respectively estimated. In light of the durability in water, ultraviolet resistance, and thermal stability, the superhydrophobic SiO(2) layers prepared in this work hold promise in a range of practical applications.  相似文献   

5.
静电纺丝制备超疏水TiO2纳米纤维网膜   总被引:3,自引:1,他引:3  
采用静电纺丝技术构筑粗糙表面, 再使用廉价的低表面能物质硅油在煅烧过程中进行同步修饰, 制备出接触角大于150°, 滚动角小于5°的TiO2超疏水表面. 该超疏水表面具有由TiO2纳米纤维和微米尺寸颗粒状硅油高温分解产物织构而成的纳米纤维网膜结构, 这种特殊的微纳米复合粗糙结构和疏水性硅油分解产物的修饰作用导致TiO2纳米纤维网膜的超疏水性. 这种超疏水的TiO2材料为超疏水材料在防水织物、无损失液体运输和微流体等领域的应用提供了新的研究视野.  相似文献   

6.
Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.  相似文献   

7.
We present here a facile method for the preparation of TiO2-based superhydrophobic surfaces. It consists of two steps: (1) roughening of the TiO2 surface with a rf (radio frequency) plasma with CF4 as an etchant and (2) modification of the roughened TiO2 surface with an octadodecylphosphonic acid (ODP) monolayer. Plasma etching caused the thinning of the TiO2 film but at the same time enhanced its surface roughness. A discontinuous wedgelike surface microtexture was formed after etching for 30 s, which, after modification with a monolayer of ODP, showed Cassie-type water super-repellency with a contact angle (CA) hysteresis smaller than 2 degrees . The state of water super-repellency (water CA >165 degrees) could be converted to the state of superhydrophilicity (water CA approximately 0 degrees) by means of ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the ODP monolayer by TiO2. Readsorption of ODP molecules leads directly to the recovery of water super-repellency.  相似文献   

8.
This work demonstrates the process of building optoelectrically cooperative surface wetting in smart and precise way. The superhydrophobic photosensitive film is constructed with TiO(2) nanotube arrays. Compared with conventional organic dyes, CdS quantum dots (QDs) as sensitizer layer are modified on TiO(2) nanotubes surface to improve photosensitivity of the composited surface in visible light region, which offer the benefit for designing and fabricating solid state hetero-junction devices. ITO glass is introduced as top electrode to apply electrical and optical stimuli and the patterned wetting is instantly obtained with masking light through ITO. The optoelectrically cooperative wettability conversion occurred on superhydrophobic TiO(2) nanotube surface at critical voltage of 12 V, which was decreased by 18 V comparing with only using electric stimulus. This study provides potential applications for TiO(2) nanotube arrays to the associated research of liquid reprography, location-controlled microfluidic device and lab-on-chip.  相似文献   

9.
In this study, we developed a facile method for preparing a superhydrophobic paper surface using a multi-layer deposition of polydiallyldimethylammonium chloride (polyDADMAC) and silica particles, followed by a fluorination surface treatment with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS, CF(3)(CF(2))(5)CH(2)CH(2)Si(OC(2)H(5))(3)). The superhydrophobic wood fiber products prepared in this study have contact angles of water greater than 150 degrees and sliding angles less than 5 degrees. Besides their high water repelling property, the superhydrophobic paper products kept a high tensile strength at high relative humidity condition. The superhydrophobic paper products also showed high resistance to bacterial contamination.  相似文献   

10.
Robust superhydrophobic surface exhibiting anti-fouling and self-cleaning ability were successfully fabricated by nano TiO2 modified by γ-aminopropyltriethoxysilane (KH550) and polydimethylsiloxane (PDMS) via wire rod coating. Due to the lower surface energy of PDMS and the hierarchical structure caused by the different aggregation sizes of TiO2 nanoparticles, the contact angle of the resulting superhydrophobic coating was 154.5° and the rolling angle was 3.5°. And the coated paper still had good non-wettability under water immersion. In addition, the coated paper was tolerant to mechanical damage and various temperature conditions. Even after 40 sandpaper wear cycles, the coating can still maintain good mechanical stability and superhydrophobicity. The superhydrophobic paper was used for oil-water separation, the separation efficiency was about 98% even after used 10 times. Furthermore, the prepared superhydrophobic paper exhibited excellent self-cleaning and anti-fouling properties, as well as demonstrated superb resistance to various water solutions owing to its high hydrophobicity. Moreover, the prepared superhydrophobic paper has application prospects in the industry of special wetting materials.  相似文献   

11.
聚苯硫醚超疏水复合涂层的制备与性能   总被引:1,自引:0,他引:1  
利用工业原料聚苯硫醚微粉和疏水性二氧化硅纳米粉末,采用喷涂法在瓷砖表面制备了疏水复合涂层.研究了热处理温度、组分配比对涂层表面形貌、粗糙度和接触角的影响,发现随着热处理温度升高,涂层表面粗糙度增大,随着疏水性二氧化硅含量的增加,由于表面聚集的疏水性二氧化硅增多,涂层疏水性增强,在热处理温度为280℃、疏水性二氧化硅与聚苯硫醚质量比为1∶1时,可获得超疏水涂层,涂层的接触角大于150°,滚落角小于4°,pH值为1~14的水溶液在其表面都具有很高的接触角.超疏水涂层具有良好的自清洁效果,并且经落沙法实验测定,超疏水涂层耐刮伤性能良好.  相似文献   

12.
In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In contrast, after 72 h, nearly all the adsorbed albumin molecules effectively exchange with other albumin molecules.  相似文献   

13.
Titanate nanofunnel brushes were grown on sol-gel derived amorphous TiO(2) thin films, whose shape can be tuned from nanosheets to nanofunnels by changing hydrothermal conditions. A superhydrophobic adhesive surface was achieved by a chemical modification of the brushes.  相似文献   

14.
A new type of superhydrophobic material consisting of a surface with supported Ag@TiO(2) core-shell nanofibers has been prepared at low temperature by plasma-enhanced chemical vapor deposition (PECVD). The fibers are formed by an inner nanocrystalline silver thread which is covered by a TiO(2) overlayer. Water contact angles depend on the width of the fibers and on their surface concentration, reaching a maximum wetting angle close to 180 degrees for a surface concentration of approximately 15 fibers microm(-2) and a thickness of 200 nm. When irradiated with UV light, these surfaces become superhydrophilic (i.e., 0 degrees contact angle). The decrease rate of the contact angle depends on both the crystalline state of the titania and on the size of the individual TiO(2) domains covering the fibers. To the best of our knowledge, this is one of the few examples existing in the literature where a superhydrophobic surface transforms reversibly into a superhydrophilic one as an effect of light irradiation.  相似文献   

15.
基于表面分子自组装和光催化转印技术,在TiO2膜层表面获得超亲/超疏水阵列微图案模板,结合电化学沉积技术,成功制备了微图案化钙磷盐膜(CaP)层.扫描电子显微镜(SEM)和电子探针分析(EPMA)结果表明,通过超亲/超疏水阵列微图案模板可构筑高空间分辨的微图案化钙磷盐膜层.微图案化钙磷盐膜层的体外MG-63细胞培养证实,细胞对钙磷盐膜层微单元有强烈的选择性粘附作用,从而可望控制细胞在微单元中的贴壁生长,实现高通量评价细胞行为.  相似文献   

16.
《中国化学》2018,36(1):51-54
Antireflection surfaces and coatings have attracted considerable interests because they can maximize light transmittance of the substrates. In this work, zeolite antireflective (ZAR) coatings are prepared via layer‐by‐layer (LBL) assembly of MFI ‐type zeolite silicalite‐1 and polyelectrolyte. A micro‐ and macroporous hierarchical structure was obtained which contributes to the antireflective property of the zeolite coatings. The light transmittance of the coating on quartz can achieve as high as 99.3% at 650 nm. Furthermore, a superhydrophobic ZAR coating can be obtained by chemical modification with 1H,1H,2H,2H–perfluorooctyl‐triethoxysilane. This work demonstrates that zeolites are excellent candidates as high transparent superhydrophobic coatings.  相似文献   

17.
The potential contribution of chemical bonds formed between bacterial cells and metal surfaces during biofilm initiation has received little attention. Previous work has suggested that bacterial siderophores may play a role in bacterial adhesion to metals. It has now been shown using in situ ATR-IR spectroscopy that enterobactin, a catecholate siderophore secreted by Escherichia coli, forms covalent bonds with particle films of titanium dioxide, boehmite (AlOOH), and chromium oxide-hydroxide which model the surfaces of metals of significance in medical and industrial settings. Adsorption of enterobactin to the metal oxides occurred through the 2,3-dihydroxybenzoyl moieties, with the trilactone macrocycle having little involvement. Vibrational modes of the 2,3-dihydroxybenzoyl moiety of enterobactin, adsorbed to TiO(2), were assigned by comparing the observed IR spectra with those calculated by the density functional method. Comparison of the observed adsorbate IR spectrum with the calculated spectra of catecholate-type [H(2)NCOC(6)H(3)O(2)Ti(OH)(4)](2-) and salicylate-type [H(2)NCOC(6)H(3)O(2)HTi(OH)(4)](2-) surface complexes indicated that the catecholate type is dominant. Analysis of the spectra for enterobactin in solution and that adsorbed to TiO(2) revealed that the amide of the 2,3-dihydroxybenzoylserine group reorientates during coordination to surface Ti(IV) ions. Investigation into the pH dependence of enterobactin adsorption to TiO(2) surfaces showed that all 2,3-dihydroxybenzoyl groups are involved. Infrared absorption bands attributed to adsorbed enterobactin were also strongly evident for E. coli cells attached to TiO(2) particle films. These studies give evidence of enterobactin-metal bond formation and further suggest the generality of siderophore involvement in bacterial biofilm initiation on metal surfaces.  相似文献   

18.
Two monosubstituted and one tetrasubstituted N-confused porphyrins (1-3) were prepared in ca. 3-5% yields using a [2 + 2] synthesis. The monosubstituted porphyrins have carbomethoxy (1) or nitro (2) substituents on one of the meso-phenyl groups, while the meso-phenyl groups of the third NCP (3) are substituted with nitro, bromo, and methyl groups in an AB(2)C pattern. The specific regiochemistry of the aryl rings around the macrocycle in each porphyrin was definitively determined using a combination of 1D ((1)H and (13)C) and 2D (gHMBC, gHSQC and ROESY) NMR spectroscopy. The absorption spectra of 1-3 in CH(2)Cl(2) are similar to those of N-confused tetraphenylporphyrin (NCTPP) but have Soret and Q bands that are shifted to lower energies with smaller extinction coefficients in comparison to those for NCTPP.  相似文献   

19.
The effects of anchoring groups on electron injection from adsorbate to nanocrystalline thin films were investigated by comparing injection kinetics through carboxylate versus phosphonate groups to TiO2 and SnO2. In the first pair of molecules, Re(LA)(CO)3Cl (ReC1A) and Re(Lp)(CO)3Cl (ReC1P), [LA=2,2'-bipyridine-4,4'-bis-CH2-COOH, Lp=2,2'-bipyridine-4,4'-bis-CH2-PO3H2], the anchoring groups were insulated from the bipyridine ligand by a CH2 group. In the second pair of molecules, Ru(dcbpyH2)2(NCS)2 (RuN3) and Ru(bpbpyH2)2(NCS)2 (RuN3P), [dcbpy=2,2'-bipyridine-4,4'-biscarboxylic acid, bpbpy=2,2'-bipyridine-4,4'-bisphosphonic acid], the anchoring groups were directly connected to the bipyridine ligands. The injection kinetics, as measured by subpicosecond IR absorption spectroscopy, showed that electron injection rates from ReC1P to both TiO2 and SnO2 were faster than those from ReC1A. The injection rates from RuN3 and RuN3P to SnO2 films were similar. On TiO2, the injection kinetics from RuN3 and RuN3P were biphasic: carboxylate group enhances the rate of the <100 fs component, but reduces the rate of the slower components. To provide insight into the effect of the anchoring groups, the electronic structures of Re-bipyridyl-Ti model clusters containing carboxylate and phosphonate anchoring groups and with and without a CH2 spacer were computed using density functional theory. With the CH2 spacer, the phosphonate group led to a stronger electronic coupling between bpy and Ti center than the carboxylate group, which accounted for the faster injection from ReC1P than ReC1A. When the anchoring groups were directly connected to the bpy ligand without the CH2 spacer, such as in RuN3 and RuN3P, their effects were 2-fold: the carboxylate group enhanced the electronic coupling of bpy pi* with TiO2 and lowered the energy of the bpy orbital. How these competing factors led to different effects on TiO2 and SnO2 and on different components of the biphasic injection kinetics were discussed.  相似文献   

20.
黏附性是超疏水表面的一个重要特性,随着对超疏水表面研究的深入,具有响应特性的智能超疏水表面引起了人们的极大兴趣,而能够作为“机械手”抓取液滴的具有高黏附性的超疏水表面自然成为关注对象。 本文讨论了表面形貌和表面化学组成对超疏水表面黏附性的影响,综述了近年来高黏附性超疏水表面制备方面的研究进展,并对高黏附性超疏水表面未来的研究方向做出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号