首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elastic field induced by a hemispherical inclusion with uniform eigeustralns in asemi-infinite elastic medium is solved by using the Green‘s function method and series expansion tech-nique. The exact solutions axe presented for the displacement and stress fields which can be expressedby complete elliptic integrals of the first, second, and third kinds and hypergeometric functions. Thepresent method can be used to determine the corresponding elastic fields when the shape of the inclusionis a spherical crown or a spherical segment. Finally, numerical results axe given for the displacementand stress fields along the axis of symmetry (x3-axis).  相似文献   

2.
This paper is concerned with the axisymmetrical elastic fields caused by an ellipsoidal inclusion with a slipping interface which undergoes a uniform eigenstrain. The problem is solved under a revolving ellipsoidal coordinate with the aid of Papkovich-Neuber general dipacement formula. In contrast to the perfectly bonded interface, when the interface between the inclusion and the matrix cannot sustain shear stress, and is free to slip, the solution cannot be expressed in closed form and involves infinite series. Therefore, the results are illustrated by numerical examples.  相似文献   

3.
The problem stated in the title is investigated with special emphasis on the first three terms of the stress expansion, proportional to r -1/2, r 0=1 and r 1/2 respectively, where r denotes the distance to the crack front. The particular case of a plane crack with a straight front and of stresses independent of the distance along the latter is studied first. It is shown that the classical plane strain and antiplane solutions must be supplemented by a few additional particular solutions to obtain the full stress expansion. The general case is then considered. The stress expansion is studied by writing the field equations (equilibrium, strain compatibility and boundary conditions) in a system of suitable curvilinear coordinates. It is shown that the number of independent constants in the stress expansion is the same as in the particular case considered previously but that the curvatures of the crack and its front and the non-uniformity of the stresses along the latter induce the appearance of corrective terms in this expansion.  相似文献   

4.
The elastic field throughout an ellipsoidal inclusion in an indefinitely-extended anisotropic material is investigated when an eigenstrain (a stress-free transformation strain) is periodically distributed throughout the inclusion. This is an extention of the results obtained by J.D. Eshelby (1961) for uniform eigenstrains and by R.J. Asaro and D.M. Barnett (1975) for polynomial eigenstrains. The solution is applied to the evaluation of elastic strain energies of a disc-shaped martensite with alternating twins and of a spherical precipitate with a banded structure. The significant amount of the elastic strain energies explains the necessity of the supercooling of austenite steel for the martensitic transformation to occur.  相似文献   

5.
When studying the regular polygonal inclusion in 1997, Nozaki and Taya discovered numerically some remarkable properties of Eshelby tensor: Eshelby tensor at the center and the averaged Eshelby tensor over the inclusion domain are equal to that of a circular inclusion and independent of the orientation of the inclusion. Then Kawashita and Nozaki justified the properties mathematically. In the present paper, some other properties of a regular polygonal inclusion are discovered. We find that for an N-fold regular polygonal inclusion except for a square, the arithmetic mean of Eshelby tensors at N rotational symmetrical points in the inclusion is also equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Furthermore, in two corollaries, we point out that Eshelby tensor at the center, the averaged Eshelby tensor over the inclusion domain, and the line integral average of Eshelby tensors along any concentric circle of the inclusion are all identical with the arithmetic mean.The project supported by the National Natural Science Foundation of China (10172003 and 10372003) The English text was polished by Keren Wang.  相似文献   

6.
《Wave Motion》1987,9(1):37-49
The paper presents a method to determine Lamé parameters λ, μ and density ϱ in a layered half-space, using monochromatic vibrations of its surface, excited by a harmonic source which is assumed to be known. The equations governing the vibrations are reduced to the Sturm-Liouville problem in scalar form for Love-type displacements, and in matrix form for the Rayleigh type. The scalar and matrix potentials of the Sturm-Liouville equations can be recovered from the corresponding impedance. Explicit formulas are given to construct the potentials by amplitudes and wavenumbers of normal (progressive) modes and attenuated standing waves. The potentials then are used to determine the elastic parameters and the density. The method can also be used for the acoustic equation.  相似文献   

7.
8.
This paper discusses the stress fields when a spheroidal inclusion, free to slip along its interface, is subjected to a constant nonshear eigenstrain, and when an elastic body containing the inhomogeneity is under all-around tension or uniaxial tension at infinity. In each case the stress field in the inclusion or the inhomogeneity is not constant, contrary to Eshelby's solution. When sliding takes place, the stress increases locally compared with the perfect bonding case, but the elastic energy decreases due to the relaxation. The relative displacement (slip) along the interface is also evaluated.  相似文献   

9.
Dislocations and the elastic fields they induce in anisotropic elastic crystals are basic for understanding and modeling the mechanical properties of crystalline solids. Unlike previous solutions that provide the strain and/or stress fields induced by dislocation loops, in this paper, we develop, for the first time, an approach to solve the more fundamental problem—the anisotropic elastic dislocation displacement field. By applying the point-force Green’s function for a three-dimensional anisotropic elastic material, the elastic displacement induced by a dislocation of polygonal shape is derived in terms of a simple line integral. It is shown that the singularities in the integrand of this integral are all removable. The proposed expression is applied to calculate the elastic displacements of dislocations of two different fundamental shapes, i.e. triangular and hexagonal. The results show that the displacement jump across the dislocation loop surface exactly equals the assigned Burgers vector, demonstrating that the proposed approach is accurate. The dislocation-induced displacement contours are also presented, which could be used as benchmarks for future numerical studies.  相似文献   

10.
IntroductionWiththedevelopmentofparticleandfiberreinforcedcomposites,theinclusion_crackinteractionproblemisbecominganimportantfieldbeingstudied .Andasamodel,itisalsousedtostudytheeffectsofmaterialdefectsonthestrengthandfractureofengineeringstructure.TheinterationbetweencircularinclusionandcrackwasstudiedinRefs.[1 -6 ] ;InRefs.[7-1 2 ] ,theinterationbetweenlineinclusionandcrackswasdiscussed ;TheinterationbetweenellipticalinclusionandcrackwasstudiedinRefs.[1 3,1 4] .However,withthedevelopmento…  相似文献   

11.
I.IntroductionManypracticalproblemsinengineering,suchascompositematerial,weldedjointorribbedslab,needustostudytheinteractionproblemoflineinclusionandcircularinclusionasshowninFig.1.Sotheproblemwasdiscussedinthispaper.Proceedingfromthestressfieldofplanecon…  相似文献   

12.
带尾翼翻转型爆炸成形弹丸试验研究   总被引:7,自引:1,他引:6  
采用多点起爆方式,设计了带尾翼翻转型爆炸成形弹丸(EFP)试验装置。用X光和SVR数字相机拍摄了EFP的外形和速度;用多层纸靶测试了EFP在不同飞行距离时的飞行姿态;进行了EFP穿靶能力的检验;并利用泡沫和锯末进行了EFP的软回收。由试验结果知,EFP速度为1.56~1.72km/s,长径比最大达到了3.69,由药型罩转变为EFP的质量转换率达到了98%,EFP具有较好的尾翼结构和气动稳定外形。该EFP能穿透厚度为50mm的厚钢靶或厚度为6mm、间距各为1m的5层薄钢靶。  相似文献   

13.
The primary objective of the present paper is to analyze the influence of interface stress on the elastic field within a nano-scale inclusion. Special attention is focused on the case of non-hydrostatic eigenstrain. From the viewpoint of practicality, it is assumed that the inclusion is spherically shaped and embedded into an infinite solid, within which an axisymmetric eigenstrain is prescribed. Following Goodier’s work, the elastic fields inside and outside the inclusion are obtained analytically. It is found that the presence of interface stress leads to conclusion that the elastic field in the inclusion is not only dependent on inclusion size but also on non-uniformity. The result is in strong contrast to Eshelby’s solution based on classical elasticity, and it is helpful in the understanding of relevant physical phenomena in nano-structured solids.  相似文献   

14.
15.
This paper deals with the inplane singular elastic field problems of inclusion corners in elastic media by an ad hoc hybrid-stress finite element method. A one-dimensional finite element method-based eigenanalysis is first applied to determine the order of singularity and the angular dependence of the stress and displacement field, which reflects elastic behavior around an inclusion corner. These numerical eigensolutions are subsequently used to develop a super element that simulates the elastic behavior around the inclusion corner. The super element is finally incorporated with standard four-node hybrid-stress elements to constitute an ad hoc hybrid-stress finite element method for the analysis of local singular stress fields arising from inclusion corners. The singular stress field is expressed by generalized stress intensity factors defined at the inclusion corner. The ad hoc finite element method is used to investigate the problem of a single rectangular or diamond inclusion in isotropic materials under longitudinal tension. Comparison with available numerical results shows the present method is an efficient mesh reducer and yields accurate stress distribution in the near-field region. As applications, the present ad hoc finite element method is extended to discuss the inplane singular elastic field problems of a single rectangular or diamond inclusion in anisotropic materials and of two interacting rectangular inclusions in isotropic materials. In the numerical analysis, the generalized stress intensity factors at the inclusion corner are systematically calculated for various material type, stiffness ratio, shape and spacing position of one or two inclusions in a plate subjected to tension and shear loadings.  相似文献   

16.
The interaction of plane harmonic waves with a thin elastic inclusion in the form of a strip in an infinite body (matrix) under plane strain conditions is studied. It is assumed that the bending and shear displacements of the inclusion coincide with the displacements of its midplane. The displacements in the midplane are found from the theory of plates. The priblem-solving method represents the displacements as discontinuous solutions of the Lamé equations and finds the unknown discontinuities solving singular integral equations by the numerical collocation method. Approximate formulas for the stress intensity factors at the ends of the inclusion are derived  相似文献   

17.
J.D. Eshelby (1957, 1959) has calculated the deformation field associated with an ellipsoidal inclusion in a state of homogeneous strain within an infinite matrix. Since most real precipitates occur with facets, the strain within such an inclusion is not uniform. Thus, plate precipitates of θ′ in Al-Cu and η in Al-Au have coherent broad faces with mismatches of 1.34 and 4.95 % respect- ively and semicoherent or disordered interfaces at the edges with residual mismatches of about ?4.3 and ?1.00% normal to the broad faces. The deformation field in the matrix around such precipitates has been calculated using Kelvin's (1848) result for the stress field due to a point force. The calculations show the existence of high stresses near the edges of the precipitates where they have an appreciable misfit. Unlike the case of an ellipsoidal inclusion, the stress fields of these precipitates have dilatational components which can affect the diffusion of solute atoms to them and, thus, the kinetics of interface migration. The behavior of alloys containing these precipitates indicates that the moduli of the precipitates are somewhat greater than those of the matrices. The present calculations, based on the assumption that the two moduli are the same, underestimate the actual deformation field in the matrix. In real systems, therefore, the effects of the deformation field on misfit dislocation nucleation and kinetics of interface migration are likely to be somewhat greater in general.  相似文献   

18.
19.
20.
A continuum mechanics model is proposed to investigate coherent misfitting precipitates in a matrix material. This elasticity based method takes arbitrary anisotropic materials, eigenstrains and interface energies into account. The equilibrium shape of the precipitate is described in terms of Eshelby’s driving forces acting on the precipitate interface. According to this force, an efficient shape optimization technique is formulated to investigate the influence of various parameters such as particle size, elastic constants and inhomogeneity on the equilibrium morphology. Using stable equilibrium shapes, the macroscopical response of the composite is calculated and compared with some common approximation techniques. The numerical treatment is realised with the finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号