首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular dynamics simulations of peptide-surface interactions   总被引:5,自引:0,他引:5  
Proteins, which are bioactive molecules, adsorb on implants placed in the body through complex and poorly understood mechanisms and directly influence biocompatibility. Molecular dynamics modeling using empirical force fields provides one of the most direct methods of theoretically analyzing the behavior of complex molecular systems and is well-suited for the simulation of protein adsorption behavior. To accurately simulate protein adsorption behavior, a force field must correctly represent the thermodynamic driving forces that govern peptide residue-surface interactions. However, since existing force fields were developed without specific consideration of protein-surface interactions, they may not accurately represent this type of molecular behavior. To address this concern, we developed a host-guest peptide adsorption model in the form of a G(4)-X-G(4) peptide (G is glycine, X is a variable residue) to enable determination of the contributions to adsorption free energy of different X residues when adsorbed to functionalized Au-alkanethiol self-assembled monolayers (SAMs). We have previously reported experimental results using surface plasmon resonance (SPR) spectroscopy to measure the free energy of peptide adsorption for this peptide model with X = G and K (lysine) on OH and COOH functionalized SAMs. The objectives of the present research were the development and assessment of methods to calculate adsorption free energy using molecular dynamics simulations with the GROMACS force field for these same peptide adsorption systems, with an oligoethylene oxide (OEG) functionalized SAM surface also being considered. By comparing simulation results to the experimental results, the accuracy of the selected force field to represent the behavior of these molecular systems can be evaluated. From our simulations, the G(4)-G-G(4) and G(4)-K-G(4) peptides showed minimal to no adsorption to the OH SAM surfaces and the G(4)-K-G(4) showed strong adsorption to the COOH SAM surface, which is in agreement with our SPR experiments. Contrary to our experimental results, however, the simulations predicted a relatively strong adsorption of G(4)-G-G(4) peptide to the COOH SAM surface. In addition, both peptides were unexpectedly predicted to adsorb to the OEG surface. These findings demonstrate the need for GROMACS force field parameters to be rebalanced for the simulation of peptide adsorption behavior on SAM surfaces. The developed methods provide a direct means of assessing, modifying, and validating force field performance for the simulation of peptide and protein adsorption to surfaces, without which little confidence can be placed in the simulation results that are generated with these types of systems.  相似文献   

2.
We report results on the pressure effects on hydrophobic interactions obtained from molecular dynamics simulations of aqueous solutions of methanes in water. A wide range of pressures that is relevant to pressure denaturation of proteins is investigated. The characteristic features of water-mediated interactions between hydrophobic solutes are found to be pressure-dependent. In particular, with increasing pressure we find that (1) the solvent-separated configurations in the solute-solute potential of mean force (PMF) are stabilized with respect to the contact configurations; (2) the desolvation barrier increases monotonically with respect to both contact and solvent-separated configurations; (3) the locations of the minima and the barrier move toward shorter separations; and (4) pressure effects are considerably amplified for larger hydrophobic solutes. Together, these observations lend strong support to the picture of the pressure denaturation process proposed previously by Hummer et al. (Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1552): with increasing pressure, the transfer of water into protein interior becomes key to the pressure denaturation process, leading to the dissociation of close hydrophobic contacts and subsequent swelling of the hydrophobic protein interior through insertions of water molecules. The pressure dependence of the PMF between larger hydrophobic solutes shows that pressure effects on the interaction between hydrophobic amino acids may be considerably amplified compared to those on the methane-methane PMF.  相似文献   

3.
The configurational-bias Monte Carlo method, which is used for efficient generation of molecular models of n-alkane chains, is combined for the first time with the dual control-volume grand-canonical molecular-dynamics simulation, which has been developed for studying transport of molecules in pores under an external potential gradient, to investigate transport and separation of binary mixtures of n-alkanes, as well as mixtures of CO2 and n-alkanes, in carbon nanopores. The effect of various factors, such as the temperature of the system, the composition of the mixture, and the pore size, on the separation of the mixtures is investigated. We also report the preliminary results of an experimental study of transport and separation of some of the same mixtures in a carbon molecular-sieve membrane with comparable pore sizes. The results indicate that, for the mixtures considered in this paper, even in very small carbon nanopores the energetic effects still play a dominant role in the transport and separation properties of the mixtures, whereas in a real membrane they are dominated by the membrane's morphological characteristics. As a result, for the mixtures considered, a single pore may be a grossly inadequate model of a real membrane, and hence one must resort to three-dimensional molecular pore network models of the membrane.  相似文献   

4.
Using molecular dynamics simulations with Tersoff reactive many-body potential for Si-Si, Si-C, and C-C interactions, we have calculated the thermal conductance at the interfaces between carbon nanotube (CNT) and silicon at different applied pressures. The interfaces are formed by axially compressing and indenting capped or uncapped CNTs against 2 x 1 reconstructed Si surfaces. The results show an increase in the interfacial thermal conductance with applied pressure for interfaces with both capped and uncapped CNTs. At low applied pressure, the thermal conductance at interface with uncapped CNTs is found to be much higher than that at interface with capped CNTs. Our results demonstrate that the contact area or the number of bonds formed between the CNT and Si substrate is key to the interfacial thermal conductance, which can be increased by either applying pressure or by opening the CNT caps that usually form in the synthesis process. The temperature and size dependences of interfacial thermal conductance are also simulated. These findings have important technological implications for the application of vertically aligned CNTs as thermal interface materials.  相似文献   

5.
We have investigated a molecular dynamics procedure for simulating the temperature‐dependent behavior of three face‐centered‐cubic metals: aluminum, copper, and platinum. A potential due to Cai and Ye, which includes both pairwise additive and multibody terms, was used in conjunction with the CHARMM code. The properties calculated were the interaction energy per atom, the radial distribution function, the mean‐square fluctuation in atomic positions, the coefficient of thermal expansion, the isothermal compressibility, and the heat capacities at constant pressure and volume. These properties were evaluated at 100° intervals from 300 to 1100 K for copper and platinum and from 300 to 800 K for aluminum, at pressures of 1 and 10,000 atm. Overall, the results were quite satisfactory. Except in one instance, the qualitative variations with temperature were reproduced reasonably well, and there was frequently also good quantitative agreement, especially at the lower temperatures. In general, the poorest results were obtained for aluminum. Some possible reasons for this are discussed. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 670–676, 2000  相似文献   

6.
We have performed molecular dynamics simulations of peptide hormone bradykinin (BK) and its fragment des-Arg9-BK in the presence of an anionic lipid bilayer, with an aim toward delineating the mechanism of action related to their bioactivity. Starting from the initial aqueous environment, both of the peptides are quickly adsorbed and stabilized on the cell surface. Whereas BK exhibits a stronger interaction with the membrane and prefers to stay on the interface, des-Arg9-BK, with the loss of C-terminal Arg, penetrates further. The heterogeneous lipid-water interface induces β-turn-like structure in the otherwise inherently flexible peptides. In the membrane-bound state, we observed C-terminal β-turn formation in BK, whereas for des-Arg9-BK, with the deletion of Arg9, turn formation occurred in the middle of the peptide. The basic Arg residues anchor the peptide to the bilayer by strong electrostatic interactions with charged lipid headgroups. Simulations with different starting orientations of the peptides with respect to the bilayer surface lead to the same observations, namely, the relative positioning of the peptides on the membrane surface, deeper penetration of the des-Arg9-BK, and the formation of turn structures. The lipid headgroups adjacent to the bound peptides become substantially tilted, causing bilayer thinning near the peptide contact region and increase the degree of disorder in nearby lipids. Again, because of hydrogen bonding with the peptide, the neighboring lipid's polar heads exhibit considerably reduced flexibility. Corroborating findings from earlier experiments, our results provide important information about how the lipid environment promotes peptide orientation/conformation and how the peptide adapts to the environment.  相似文献   

7.
Molecular dynamics simulations of polyethylene chains (CnH2n+2 for n = 13, 16, 28, 60) have been carried out to investigate both equilibrium and dynamic properties of polymer melts confined between flat solid surfaces. We observe an oscillatory monomer density in the direction normal to the solid surfaces, which depends on the size of the monomers (i.e., on the volume density of the system). The packing manner of monomer segments, segment orientation, and local conformations of chains are found to be independent of chain length. In addition, preferential interfacial adsorption of chain ends is observed. The chains are flattened close to the surface and many molecules assume essentially two-dimensional train configurations even in the case of C60H122 melts. The apparent self-diffusivities of the centers of mass of the molecules depend on their distance from a surface. Molecules adjacent to a surface exhibit a reduced mobility perpendicular to the surface and an increased one parallel to it. The self-diffusion constant parallel to a surface depends strongly on the size of the monomers. An increase of the united atom diameter by 10% reduces the diffusion constant by a factor of three, in good agreement with the experimental value. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The effect of the strength of electrostatic and short-range interactions on the multilayer assembly of oppositely charged polyelectrolytes at a charged substrate was studied by molecular dynamics simulations. The multilayer buildup was achieved through sequential adsorption of charged polymers in a layer-by-layer fashion from dilute polyelectrolyte solutions. The strong electrostatic attraction between oppositely charged polyelectrolytes at each deposition step is a driving force behind the multilayer growth. Our simulations have shown that a charge reversal after each deposition step is critical for steady multilayer growth and that there is a linear increase in polymer surface coverage after the first few deposition steps. Furthermore, there is substantial intermixing between chains adsorbed during different deposition steps. We show that the polymer surface coverage and multilayer structure are each strongly influenced by the strength of electrostatic and short-range interactions.  相似文献   

9.
Molecular dynamics simulations are performed to study oxygen adsorption on platinum clusters supported on a graphite surface. The Sutton–Chen many-body potential is used for the Pt–Pt interaction, whereas a Steele potential was used to represent the carbon surface. The oxygen–oxygen intramolecular force is modeled by a harmonic oscillator model and other interactions are described by the Lennard–Jones potential. The results indicate an optimum loading of platinum for maximum specific adsorption of oxygen. Adsorption isotherms are constructed and the energies and orientation of adsorbed oxygen are reported. The relevance of this study to electrode processes is discussed.  相似文献   

10.
Zhang  Bing  Yang  Jie-qin  Liu  Ying  Hu  Bin  Yang  Yang  Zhao  Li  Lu  Qiang 《Cellulose (London, England)》2022,29(12):6565-6578
Cellulose - Heating is essential in various biomass pre-treatments and thermal conversion processes. It is of practical significance to study the characteristics of cellulose-lignin and...  相似文献   

11.
Summary Halide glasses have been extensively studied in recent years because of their potential application as infrared transmitting fibre optic materials. They are believed to be more ionic than glasses based on silica and should therefore be more amenable to molecular dynamics simulation using simple two-body potentials. Here the main features of structural models derived using such techniques are described and compared with available structural data. Possible future applications of this approach are outlined.  相似文献   

12.
In this article a procedure is derived to obtain a performance gain for molecular dynamics (MD) simulations on existing parallel clusters. Parallel clusters use a wide array of interconnection technologies to connect multiple processors together, often at different speeds, such as multiple processor computers and networking. It is demonstrated how to configure existing programs for MD simulations to efficiently handle collective communication on parallel clusters with processor interconnections of different speeds.  相似文献   

13.
14.
Computer simulation methods are becoming increasingly widespread as tools for studying the structure and dynamics of lipid bilayer membranes. The length scale and time scale accessible to atomic-level molecular dynamics simulations are rapidly increasing, providing insight into the relatively slow motions of molecular reorientation and translation and demonstrating that effects due to the finite size of the simulation cell can influence simulation results. Additionally, significant advances have been made in the complexity of membrane systems studied, including bilayers with cholesterol, small solute molecules, and lipid-protein and lipid-DNA complexes. Especially promising is the progress that continues to be made in the comparison of simulation results with experiment, both to validate the simulation algorithms and to aid in the interpretation of existing experimental data.  相似文献   

15.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

16.
Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis in all organisms. Biotin carboxylase from Escherichia coli, whose crystal structures with and without ATP bound have been determined, has served as a model system for this component of the acetyl-CoA carboxylase complex. The two crystal structures revealed a large conformational change of one domain relative to the other domains when ATP is bound. Unfortunately, the crystal structure with ATP bound was obtained with an inactive site-directed mutant of the enzyme. As a consequence the structure with ATP bound lacked key structural information such as for the Mg2+ ions and contained altered conformations of key active-site residues. Therefore, nanosecond molecular dynamics studies of the wild-type biotin carboxylase were undertaken to supplant and amend the results of the crystal structures. Specifically, the protein-metal interactions of the two catalytically critical Mg2+ ions bound in the active site are presented along with a reevaluation of the conformations of active-site residues bound to ATP. In addition, the regions of the polypeptide chain that serve as hinges for the large conformational change were identified. The results of the hinge analysis complemented a covariance analysis that identified the individual structural elements of biotin carboxylase that change their conformation in response to ATP binding.  相似文献   

17.
Cardiolipin is a key lipid component in the inner mitochondrial membrane, where the lipid is involved in energy production, cristae structure, and mechanisms in the apoptotic pathway. In this article we used molecular dynamics computer simulations to investigate cardiolipin and its effect on the structure of lipid bilayers. Three cardiolipin/POPC bilayers with different lipid compositions were simulated: 100, 9.2, and 0% cardiolipin. We found strong association of sodium counterions to the carbonyl groups of both lipid types, leaving in the case of 9.2% cardiolipin virtually no ions in the aqueous compartment. Although binding occurred primarily at the carbonyl position, there was a preference to bind to the carbonyl groups of cardiolipin. Ion binding and the small headgroup of cardiolipin gave a strong ordering of the hydrocarbon chains. We found significant effects in the water dipole orientation and water dipole potential which can compensate for the electrostatic repulsion that otherwise should force charged lipids apart. Several parameters relevant for the molecular structure of cardiolipin were calculated and compared with results from analyses of coarse-grained simulations and available X-ray structural data.  相似文献   

18.
Steered molecular dynamics simulations of protein-ligand interactions   总被引:1,自引:0,他引:1  
Molecular recognition and specific protein-ligandinteractions are central to many biochemical processes,such as enzyme catalysis, assembly of organelles, en-ergy transduction, signaling, diverse control functions,and replication, expression and storage of the geneticmaterial[1]. Moreover, protein-ligand interactions pro-vide the mechanism of many drug therapies and un-derstanding of such interactions is thus significant forrational drug design[1,2]. For the experimental studiesof protein-ligan…  相似文献   

19.
We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations-as well as their extensive fluctuations-suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin.  相似文献   

20.
The electronic and structural features of platinum clusters containing tertiary phosphine and hydride ligands have been analysed using Extended Hückel molecular orbital calculations. The calculations illustrate how the non-conical nature of the constituent PtL2 fragments leads to their having a marked conformational preference in the clusters. The introduction of PtL fragments into some of the clusters leads to a further flexibility in electron count which may also be rationalised on the basis of the analysis presented here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号