共查询到20条相似文献,搜索用时 15 毫秒
1.
Chan EW Chattopadhaya S Panicker RC Huang X Yao SQ 《Journal of the American Chemical Society》2004,126(44):14435-14446
The denaturing aspect of current activity-based protein profiling strategies limits the classes of chemical probes to those which irreversibly and covalently modify their targeting enzymes. Herein, we present a complimentary, affinity-based labeling approach to profile enzymes which do not possess covalently bound substrate intermediates. Using a variety of enzymes belonging to the class of metalloproteases, the feasibility of the approach was successfully demonstrated in several proof-of-concept experiments. The design template of affinity-based probes targeting metalloproteases consists of a peptidyl hydroxamate zinc-binding group (ZBG), a fluorescent reporter tag, and a photolabile diazirine group. Photolysis of the photolabile unit in the probe effectively generates a covalent, irreversible linkage between the probe and the target enzyme, rendering the enzyme distinguishable from unlabeled proteins upon separation on a SDS-PAGE gel. A variety of labeling studies were carried out to confirm that the affinity-based approach selectively labeled metalloproteases in the presence of a large excess of other proteins and that the success of the labeling reaction depends intimately upon the catalytic activity of the enzyme. Addition of competitive inhibitors proportionally diminished the extent of enzyme labeling, making the approach useful for potential in situ screening of metalloprotease inhibitors. Using different probes with varying P(1) amino acids, we were able to generate unique "fingerprint" profiles of enzymes which may be used to determine their substrate specificities. Finally, by testing against a panel of yeast metalloproteases, we demonstrated that the affinity-based approach may be used for the large-scale profiling of metalloproteases in future proteomic experiments. 相似文献
2.
Activity-based protein profiling (ABPP) is a technique that uses highly selective active-site targeted chemical probes to label and monitor the state of proteins. ABPP integrates the strengths of both chemical and biological disciplines. By utilizing chemically synthesized or modified bioactive molecules, ABPP is able to reveal complex physiological and pathological enzyme–substrate interactions at molecular and cellular levels. It is also able to provide critical information of the catalytic activity changes of enzymes, annotate new functions of enzymes, discover new substrates of enzymes, and allow real-time monitoring of the cellular location of enzymes. Based on the mechanism of probe-enzyme interaction, two types of probes that have been used in ABPP are activity-based probes (ABPs) and affinity-based probes (AfBPs). This review highlights the recent advances in the use of ABPs and AfBPs, and summarizes their design strategies (based on inhibitors and substrates) and detection approaches.This review highlights the recent advances in the use of activity-based probes (ABPs) and affinity-based probes (AfBPs), and summarizes their design strategies (based on inhibitors and substrates) and detection approaches. 相似文献
3.
4.
Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo 总被引:1,自引:0,他引:1
The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by posttranslational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a "clickable" handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small-molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class. 相似文献
5.
Jørgen Petersen Søren Jensby Nielsen Christian Morszeck Peter B. Jensen Maxwell Sehested Morten Grauslund 《Electrophoresis》2010,31(16):2714-2721
The anticancer drug belinostat is a hydroxamate histone deacetylase inhibitor that has shown significant antitumour activity in various tumour models and also in clinical trials. In this study, we utilized a proteomic approach in order to evaluate the effect of this drug on protein expression in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 μM belinostat were analysed by 2‐D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed 45 unique differentially expressed proteins that were identified by LC‐MSMS analysis. Among these proteins, of particular interest are the downregulated proteins nucleophosmin and stratifin, and the upregulated proteins nucleolin, gelsolin, heterogeneous nuclear ribonucleoprotein K, annexin 1, and HSP90B that all were related to the proto‐oncogene proteins p53, Myc, activator protein 1, and c‐fos protein. The modulation of these proteins is consistent with the observations that belinostat is able to inhibit clonogenic cell growth of HCT116 cells and the biological role of these proteins will be discussed. 相似文献
6.
Activity-based protein profiling (ABPP) has been used extensively to characterize the physiological functions of enzymes but has not yet been extended to ion channels. We have synthesized a state-dependent photoaffinity probe for the nicotinic acetylcholine receptor (nAChR) as a proof of concept for the development of ion channel directed ABPP probes. The candidate probe BPyneTEA comprises an nAChR binding moiety, a benzophenone moiety for photolabeling, and an alkyne moiety for biotinylation via "click chemistry". Single-molecule current measurements show that BPyneTEA blocks both the closed and open (i.e., nondesensitized) conformations of the nAChR with similar kinetics. In living cells, BPyneTEA photolabels the closed state selectively over the inactive desensitized state. BPyneTEA thus shows promise as a probe for nondesensitized nAChRs and may be useful in studying the molecular physiology of desensitization. The structure and reactivity of ion channel pores in general suggest that they will be a broadly useful target for ABPP probes. 相似文献
7.
8.
Herein we describe the development of activity-based probes toward protein tyrosine phosphatase (PTP) subfamilies. A novel phosphotyrosine analog serving as the latent trapping unit has been designed and explored. It allows addition of various amino acid residues to its C- and N-termini to extend the recognition element. As a proof-of-concept, we have synthesized three tripeptide probes, which carry the phosphotyrosine analog in the middle position and a leucinamide residue at the C-terminus. The three tripeptide probes differed only in their N-terminal amino acid (Glu, Phe, and Lys). The labeling properties of these probes were determined and the results showed the newly synthesized probes could selectively label PTPs in an activity-dependent manner. In addition, the probes’ target specificity was also shown to be influenced by the amino acid residues flanking the phosphotyrosine analog. 相似文献
9.
We use the structural dissection of two 1,3-dioxanes with in-cell histone deacetylase (HDAC) paralog selectivity to identify key elements for selective HDAC inhibitors. We demonstrate that o-aminoanilides are inactive toward HDAC6 while apparently inhibiting deacetylases that act upon histone substrates. This finding has important clinical implications for the development of HDAC inhibitor-based treatments that do not interfere with microtubule dynamics associated with HDAC6. We also show that suberoylanilide hydroxamic acid (SAHA) alone is a nonparalog-selective HDAC inhibitor and that the 1,3-dioxane diversity appended to SAHA is essential for HDAC6 paralog selectivity. 相似文献
10.
A Dose JO Jost AC Spieß P Henklein M Beyermann D Schwarzer 《Chemical communications (Cambridge, England)》2012,48(76):9525-9527
Here we report a simple procedure for generating colorimetric histone deacetylase (HDAC) substrates by solid-phase peptide synthesis based on racemization-free couplings of amino acid chlorides. We demonstrate the applicability of these substrates in HDAC assays. 相似文献
11.
Background
Histone deacetylase (HDAC) proteins are associated with cell proliferation, differentiation, apoptosis, and cancer. Specifically, HDAC1 is linked with cell growth, a hallmark of cancer formation. HDAC1 is a phosphoprotein and phosphorylation at S421 and S423 promotes HDAC1 enzymatic activity and protein association. While single and double point mutants of HDAC1 at S421 and S423 appear functionally similar, the evidence suggests that HDAC1 is phosphorylated simultaneously at both S421 and S423 in vivo. Additional experiments are necessary to probe the role of double phosphorylation of HDAC1 at S421 and S423. 相似文献12.
13.
Adibekian A Martin BR Chang JW Hsu KL Tsuboi K Bachovchin DA Speers AE Brown SJ Spicer T Fernandez-Vega V Ferguson J Hodder PS Rosen H Cravatt BF 《Journal of the American Chemical Society》2012,134(25):10345-10348
The development of small-molecule inhibitors for perturbing enzyme function requires assays to confirm that the inhibitors interact with their enzymatic targets in vivo. Determining target engagement in vivo can be particularly challenging for poorly characterized enzymes that lack known biomarkers (e.g., endogenous substrates and products) to report on their inhibition. Here, we describe a competitive activity-based protein profiling (ABPP) method for measuring the binding of reversible inhibitors to enzymes in animal models. Key to the success of this approach is the use of activity-based probes that show tempered rates of reactivity with enzymes, such that competition for target engagement with reversible inhibitors can be measured in vivo. We apply the competitive ABPP strategy to evaluate a newly described class of piperazine amide reversible inhibitors for the serine hydrolases LYPLA1 and LYPLA2, two enzymes for which selective, in vivo active inhibitors are lacking. Competitive ABPP identified individual piperazine amides that selectively inhibit LYPLA1 or LYPLA2 in mice. In summary, competitive ABPP adapted to operate with moderately reactive probes can assess the target engagement of reversible inhibitors in animal models to facilitate the discovery of small-molecule probes for characterizing enzyme function in vivo. 相似文献
14.
BACKGROUND: The field of proteomics aims to characterize dynamics in protein function on a global level. However, several classes of proteins, in particular low abundance proteins, remain difficult to characterize using standard proteomics technologies. Recently, chemical strategies have emerged that profile classes of proteins based on activity rather than quantity, thereby greatly facilitating the analysis of low abundance constituents of the proteome. RESULTS: In order to expand the classes of proteins susceptible to analysis by activity-based methods, we have synthesized a library of biotinylated sulfonate esters and applied its members to complex proteomes under conditions that distinguish patterns of specific protein reactivity. Individual sulfonates exhibited unique profiles of proteome reactivity that in extreme cases appeared nearly orthogonal to one another. A robustly labeled protein was identified as a class I aldehyde dehydrogenase and shown to be irreversibly inhibited by members of the sulfonate library. CONCLUSIONS: Through screening the proteome with a non-directed library of chemical probes, diverse patterns of protein reactivity were uncovered. These probes labeled protein targets based on properties other than abundance, circumventing one of the major challenges facing contemporary proteomics research. Considering further that the probes were found to inhibit a target enzyme's catalytic activity, the methods described herein should facilitate the identification of compounds possessing both selective proteome reactivities and novel bioactivities. 相似文献
15.
Lone AM Bachovchin DA Westwood DB Speers AE Spicer TP Fernandez-Vega V Chase P Hodder PS Rosen H Cravatt BF Saghatelian A 《Journal of the American Chemical Society》2011,133(30):11665-11674
Peptidases play vital roles in physiology through the biosynthesis, degradation, and regulation of peptides. Prolyl endopeptidase-like (PREPL) is a newly described member of the prolyl peptidase family, with significant homology to mammalian prolyl endopeptidase and the bacterial peptidase oligopeptidase B. The biochemistry and biology of PREPL are of fundamental interest due to this enzyme's homology to the biomedically important prolyl peptidases and its localization in the central nervous system. Furthermore, genetic studies of patients suffering from hypotonia-cystinuria syndrome (HCS) have revealed a deletion of a portion of the genome that includes the PREPL gene. HCS symptoms thought to be caused by lack of PREPL include neuromuscular and mild cognitive deficits. A number of complementary approaches, ranging from biochemistry to genetics, will be required to understand the biochemical, cellular, physiological, and pathological mechanisms regulated by PREPL. We are particularly interested in investigating physiological substrates and pathways controlled by PREPL. Here, we use a fluorescence polarization activity-based protein profiling (fluopol-ABPP) assay to discover selective small-molecule inhibitors of PREPL. Fluopol-ABPP is a substrate-free approach that is ideally suited for studying serine hydrolases for which no substrates are known, such as PREPL. After screening over 300,000 compounds using fluopol-ABPP, we employed a number of secondary assays to confirm assay hits and characterize a group of 3-oxo-1-phenyl-2,3,5,6,7,8-hexahydroisoquinoline-4-carbonitrile and 1-alkyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile PREPL inhibitors that are able to block PREPL activity in cells. Moreover, when administered to mice, 1-isobutyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile distributes to the brain, indicating that it may be useful for in vivo studies. The application of fluopol-ABPP has led to the first reported PREPL inhibitors, and these inhibitors will be of great value in studying the biochemistry of PREPL and in eventually understanding the link between PREPL and HCS. 相似文献
16.
Wang J Uttamchandani M Li J Hu M Yao SQ 《Chemical communications (Cambridge, England)》2006,(36):3783-3785
By using "Click Chemistry", we achieved the facile synthesis of various affinity-based hydroxamate probes that enable generation of activity-based fingerprints of a variety of metalloproteases, including matrix metalloproteases (MMPs), in proteomics experiments. 相似文献
17.
McGouran JF Kramer HB Mackeen MM di Gleria K Altun M Kessler BM 《Organic & biomolecular chemistry》2012,10(17):3379-3383
Novel ubiquitin-based active site probes including a fluorescent tag have been developed and evaluated. A new, functionalizable electrophilic trap is utilized allowing for late stage diversification of the probe. Attachment of fluorescent dyes allowed direct detection of endogenous deubiquitinating enzyme (DUB) activities in cell extracts by in-gel fluorescence imaging. 相似文献
18.
Zhu Q Girish A Chattopadhaya S Yao SQ 《Chemical communications (Cambridge, England)》2004,(13):1512-1513
In this article, we report the design and synthesis of a group of novel activity-based probes that target different protease sub-classes based on their substrate specificities, rather than their enzymatic mechanisms. The feasibility of our approach has been demonstrated by using representative members of the different protease sub-classes. 相似文献
19.
We have developed an affinity-based probe for the proteomic profiling of aspartic proteases. Our probe was shown to be selective towards aspartic proteases over other proteins. It was also shown that the strategy may be used to label selectively aspartic proteases in the presence of a large excess of other proteins, thus making it useful for future proteome profiling experiments. 相似文献
20.
Conformational analogues of the hydroxamic acid Oxamflatin compounds, have been synthesised to enable evaluation of the impact of varying the linking section on histone deacetylase inhibition. Preliminary testing indicates treatment of leukaemia cells with each of the analogues leads to significant inhibition of histone deacetylase and reduction in cell growth and proliferation. 相似文献