首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface activity of the poly–[block (ethylene oxide)]–poly [block (propylene oxide)]–poly [block (ethylene oxide)] copolymers (EO)x–(PO)y–(EO)x adsorbed together with dihexadecyl phosphoric acid (DHP), a synthetic phospholipid, is analyzed from their surface pressure and surface potential isotherms. The block copolymers of (EO)x–(PO)y–(EO)x with variable molecular weight (1100–14 000) were dissolved in the subphase for DHP monolayers. The concentration of the copolymers within the aqueous subphase were selected to render an initial surface tension of 60 mN/m. The simultaneous adsorption of the copolymer and DHP is attested by the observation of a liquid expanded state at large areas, absent for pure DHP monolayers. Above some critical surface pressure all copolymers cited above are expelled from the interface. The surface potential isotherms, which give information on the component of the molecular dipole moment normal to the plane of the monolayer, are interpreted in terms of changes in the copolymer conformation as well as in terms of the copolymer desorption from the air–liquid interface. For an equal hydrophobic/hydrophilic ratio, the size of the chains or molecular weight is decisive in the mechanism of the copolymer expulsion from the air–liquid interface.  相似文献   

2.
In this study, the functionalized, linear, hydrophobic fluid organosiloxane polymers, namely, methylhydrosiloxane–dimethylsiloxane copolymers supported on a polypropylene microporous flat sheet membrane (Celgard 2502 and 2402) have been tested as supported liquid membranes (SLMs) for phenol recovery from aqueous phases into a 0.1 M NaOH phase. The functionalized polymers include, Me3SiO[MeSi(OR)O]x[Me2SiO]ySiMe3 (containing x = 15–18, 25–35 and 50–55 mol% of R, where R is –(CH2)nNMe2 (n = 3 or 4 or 6) or –(CH2)2OEt pendent organofunctional groups. The functionalities, R, tested were derived from the commercially available 3-dimethylamino-1-propanol and 2-ethoxyethanol as well as newly synthesized 4-dimethylamino-1-butanol and 6-dimethylamino-1-hexanol which have been made for the purpose of this study.

The study showed that phenol permeation expressed as permeate flux through the membranes increases with the larger number of carbon spacers in the alkyl chain of the aminoalcohol pendent, larger porosity of the polypropylene support films, higher mol% of the methylhydrosiloxane portion functionalized and faster flow rates of both the feed and the receiving phases. Phenol permeation was enhanced significantly when the mol% of the methylhydrosiloxane portion was 50–55 or 25–35 with 6-dimethylamino-1-hexanol functionality supported on Celgard 2502.  相似文献   


3.
Reactions of CoX2·6H2O (X = Cl, ClO4) with bis(3,5-dimethylpyrazolyl)methane (dmpzm) and formic acid, acetic acid, benzoic acid, salicylic acid, maleic acid, or fumaric acid under the presence of KOH solution produced a new family of Co(II)/dmpzm complexes, [Co(dmpzm)2L]X·nH2O (1: L = O2CH, X = Cl, n = 2; 2: L = OAc, X = Cl, n = 3; 3: L = benzoate, X = ClO4, n = 1/3; 4: L = salicylate, X = ClO4, n = 1/3) and [Co2(dmpzm)4L](ClO4)2·nSolv (5: L = maleate, n = 3, Solv = H2O; 6: L = fumarate, n = 2, Solv = MeOH). These compounds were structurally characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1–4 are mononuclear while 5–6 are binuclear. Each cobalt atom of 1–6 is hexacoordinate, with a distorted octahedral CoN4O2 coordination geometry incorporating two N,N′-bidentate dmpzm ligands and one O,O′-bidentate carboxylate ligand. There are rich intra- and intermolecular hydrogen bonds in the crystals of 1–6, thereby forming either 2D hydrogen-bonded networks (1 and 2) or 3D hydrogen-bonded networks (3–6). In addition, the thermal behaviors of 1–6 were also investigated.  相似文献   

4.
To improve interfacial phenomena of poly(dimethylsiloxane) (PDMS) as biomaterials, well-defined triblock copolymers were prepared as coating materials by reversible addition-fragmentation chain transfer (RAFT) controlled polymerization. Hydroxy-terminated poly(vinylmethylsiloxane-co-dimethylsiloxane) (HO–PVlDmMS–OH) was synthesized by ring-opening polymerization. The copolymerization ratio of vinylmethylsiloxane to dimethylsiloxane was 1/9. The molecular weight of HO–PVlDmMS–OH ranged from (1.43 to 4.44) × 104, and their molecular weight distribution (Mw/Mn) as determined by size-exclusion chromatography equipped with multiangle laser light scattering (SEC-MALS) was 1.16. 4-Cyanopentanoic acid dithiobenzoate was reacted with HO–PVlDmMS–OH to obtain macromolecular chain transfer agents (macro-CTA). 2-Methacryloyloxyethyl phosphorylcholine (MPC) was polymerized with macro-CTAs. The gel-permeation chromatography (GPC) chart of synthesized polymers was a single peak and Mw/Mn was relatively narrow (1.3–1.6). Then the poly(MPC) (PMPC)–PVlDmMS–PMPC triblock copolymers were synthesized. The molecular weight of PMPC in a triblock copolymer was easily controllable by changing the polymerization time or the composition of the macro-CTA to a monomer in the feed. The synthesized block copolymers were slightly soluble in water and extremely soluble in ethanol and 2-propanol.

Surface modification was performed via hydrosilylation. The block copolymer was coated on the PDMS film whose surface was pretreated with poly(hydromethylsiloxane). The surface wettability and lubrication of the PDMS film were effectively improved by immobilization with the block copolymers. In addition, the number of adherent platelets from human platelet-rich plasma (PRP) was dramatically reduced by surface modification. Particularly, the triblock copolymer having a high composition ratio of MPC units to silicone units was effective in improving the surface properties of PDMS.

By selective decomposition of the Si–H bond at the surface of the PDMS substrate by irradiation with UV light, the coating region of the triblock copolymer was easily controlled, resulting in the fabrication of micropatterns. On the surface, albumin adsorption was well manipulated.  相似文献   


5.
Synthesized hydrated lamellar acidic crystalline magadiite (H2Si14O29·2H2O) nanocompound was used as host for intercalation of polar n-alkylmonoamine molecules of the general formula H3C(CH2)nNH2 (n = 1–6) in aqueous solution. The original interlayer distance (d) of 1500 pm, determined by X-ray powder diffraction patterns, increases after intercalation. The values correlated with the number of aliphatic amine carbon (nc) atoms: d = [(1312 ± 11) + (21 ± 2)]nc. The amount of intercalated amines (Ns), decreased as nc increased: Ns = [(5.82 ± 0.04) − (0.45 ± 0.01)]nc. The acidic layered nanocompound was calorimetrically titrated with the amines and the thermodynamic data gave exothermic values for all guest molecules, as shown by the correlation: ΔintH = −[(24.45 ± 0.49) − (1.91 ± 0.10)]nc and d = [(1576 ± 16) − (10.8 ± 1.0)]ΔintH. The negative values of the Gibbs energies and the positive entropies also presented the correlations: ΔintG = −[(22.8 ± 0.2) − (0.2 ± 0.1)]nc and ΔintS = [(6 ± 1) + (5 ± 1)]nc, respectively.  相似文献   

6.
Jun Jiang  Wei Lu  Yi Luo   《Chemical physics letters》2004,400(4-6):336-340
We have applied the elastic-scattering Green’s function theory to study the coherent electron transportation processes in both metal–alkanedithiol–metal (gold–[S(CH2)nS]–gold, n = 8–14) and metal–alkanemonothiol–metal (gold–[H(CH2)nS]–gold, n = 8–14) at the hybrid density functional theory level. It is shown that the current decreases exponentially with the molecular length. At the low temperature limit the electron decay rate, β, for alkanedithiol junction is found to be around 0.30/CH2 at 1.0 V bias, much smaller than the calculated value of 0.60/CH2 for alkanemonothiol junction. The decay rate for alkanedithiol junction at the room temperature is neither sensitive to the activation of the Au–S stretching vibrational mode nor to the external bias. The calculated current–voltage characteristics and decay rates for both junctions are in excellent agreement with the corresponding experimental results.  相似文献   

7.
The title cobalt(III) complexes have been investigated by polarized absorption and Raman spectroscopies of the single crystals. The symmetry properties of the d-electron orbitals and of the vibrational modes attributable to the Raman bands of trans(Cl2)-[CoCl2(NH3)n(H2O)4−n]Cl complexes (n = 2, 3, or 4) were examined to elucidated the peculiar observation that ligand substitution causes no splitting of the 15 200-cm−1 absorption band and the 250-cm−1 Raman band. Effects of replacing the NH3 ligand with H2O on the electronic structure, atom–atom force constants and vibrational modes of these complex ions are briefly described.  相似文献   

8.
A rapid, sensitive and reliable high performance liquid chromatographic method coupled with tandem mass spectrometry (HPLC–MS/MS) has been developed and validated for the determination of cilnidipine, a relatively new calcium antagonist, in human plasma. The reversed-phase chromatographic system was interfaced with a TurboIonSpray (TIS) source. Nimodipine was employed as the internal standard (IS). Sample extracts following protein precipitation were injected into the HPLC–MS/MS system. The analyte and IS were eluted isocratically on a C18 column, with a mobile phase consisting of CH3OH and NH4Ac (96:4, v/v). The ions were detected by a triple quadrupole mass spectrometric detector in the negative mode. Quantification was performed using multiple reaction monitoring (MRM) of the transitions m/z 491.2 → 122.1 and m/z 417.1 → 122.1 for cilnidipine and for the IS, respectively. The analysis time for each run was 3.0 min. The calibration curve fitted well over the concentration range of 0.1–10 ng mL−1, with the regression equation Y = (0.103 ± 0.002)X + (0.014 ± 0.003) (n = 5), r = 0.9994. The intra-day and inter-day R.S.D.% were less than 12.51% at all concentration levels within the calibration range. The recoveries were between 92.71% and 97.64%. The long-term stability and freeze-thaw stability were satisfying at each level. The present method provides a modern, rapid and robust tool for pharmacokinetic studies of cilnidipine.  相似文献   

9.
The heteronuclear clusters [Os10C(CO)24(MPR3nm− (n = 1, m = 1; 2: M = Au; 3: M = Ag; 4: M = Cu; 5 n = 2, m = 0, M = Ag) have been prepared. These clusters undergo molecular rearrangements in solution, and two isomeric forms of 2, 3, 4, 5 and 6 have been identified. This interconversion is thought to involve a cap [lrarr2] edge bridge [lrarr2] cap pathway.  相似文献   

10.
The proline-rich N-Terminal domain peptides of γ-zein (VHLPPP)n with n = 1 and 3 (peptides I and II) are shown to form stable Langmuir films at air/water interface and the films have been characterized using surface pressure–molecular area (πA), surface potential–molecular area (ΔVA) isotherms, respectively. The longer peptide sequence does not show dramatic increase in surface or interfacial properties suggesting that the minimum length of n = 1 is sufficient to achieve the necessary surface properties. Brewster angle micrographs also agreed with these results. The high surface-active nature of the peptide suggests a fairly non-polar character at air/water interface and at solid/air interface when coated expresses a high surface energy.

Additives such as isopropyl alcohol (IPA) and polyvinyl alcohol (PVA) with the peptides showed more homogenous films at the air/water interface and also improved mechanical and tensile properties. The organized assembly of peptide I at the air/water and solid/air interface suggests that even thin layer of the peptide could play an important role in coating the inner surface of protein body membrane in storage proteins. Composite films of such short peptides with biocompatible polymers may find applications as surface coatings and in biomaterials.  相似文献   


11.
Band gap photoluminescence (PL) behaviors of single-walled carbon nanotubes (SWNTs) grown by the methods of chemical vapor deposition and pulsed-laser vaporization are investigated over the wide diameter range (≈0.8–1.4 nm). The peak intensity of the PL signals strongly depends on chirality and the ‘(2n + m) family type’ of SWNTs. Based on the PL results, a population analysis of these SWNTs is conducted by combining the calculated PL yields for each (nm) tube. The results are directly compared with the histograms of diameter distributions estimated by the transmission electron microscope (TEM) observations to check the validity of the analysis.  相似文献   

12.
The five-coordinate mono-halide mononuclear Zn(II) complexes [Zn(tpa)X]+ (tpa = tris(2-pyridylmethyl)amine; X = I ([Zn(tpa)I]I; 1a), Br ([Zn(tpa)Br](ZnBr4)0.5; 2a) and Cl ([Zn(tpa)Cl](ZnCl4)0.5; 3a)) and the six-coordinate mononuclear complex [Zn(tpa)(NCS)2] (4a) have been synthesized and characterized by X-ray crystallography. The [Zn(tpa)X]+ complexes doped with the corresponding [Mn(tpa)X2] complexes (X = I (1b), Br (2b) and Cl (3b)) have been synthesized and their electronic properties investigated by multifrequency high field EPR (HF-EPR) (95–285 GHz). The magnetically diluted conditions allow the determination of the hyperfine coupling constant A (A = 68.10−4 cm−1 for 1b–3b). The zero-field splitting parameters (D and E) found for 1b–3b are comparable to those found for neat samples of the [Mn(tpa)X2] complexes (1b: D = 0.635 cm−1, E/D = 0.189; 2b: D = 0.360 cm−1, E/D = 0.192; 3b: D = 0.115 cm−1, E/D = 0.200). The efficacy of using multifrequency EPR under dilute conditions to precisely determine spin Hamiltonian parameters is discussed.  相似文献   

13.
Elastic modulus and crystal growth kinetics have been studied for colloidal crystals of core–shell type colloidal spheres (diameter = 160–200 nm) in aqueous suspension. Crystallization properties of three kinds of spheres, which have poly(styrene) core and poly(ethylene oxide) shell with different oxyethylene chain length (n = 50, 80 and 150), were examined by reflection spectroscopy. The suspensions were deionized exhaustively for more than 1 year using mixed bed of ion-exchange resins. The rigidities of the crystals range from 0.11 to 120 Pa and from 0.56 to 76 Pa for the spheres of n = 50 and 80, respectively, and increase sharply as the sphere volume fraction increase. The g factor, parameter for crystal stability, range from 0.029 to 0.13 and from 0.040 to 0.11 for the spheres of n = 50 and 80, respectively. These g values indicate the formation of stable crystals, and the values were decreased as the sphere volume fraction increased. Two components of crystal growth rate coefficients, fast and slow, were observed in the order from 10−3 to 101 s−1. This is due to the secondary process in the colloidal crystallization mechanism, corresponding to reorientation from metastable crystals formed in the primary process and/or Ostwald-ripening process. There are no distinct differences in the structural, kinetic and elastic properties among the colloidal crystals of the different core–shell size spheres, nor difference between those of core–shell spheres and silica or poly(styrene) spheres. The results are very reasonably interpreted by the fact that colloidal crystals are formed in a closed container owing to long-range repulsive forces and the Brownian movement of colloidal spheres surrounded by extended electrical double layers, and their formation is not influenced by the rigidity and internal structure of the spheres.  相似文献   

14.
The CCSD(T)/11e-RECP//MP2/11e-RECP method was used to explore the potential energy surfaces (PESs) of the formation of Agn (n = 2–6) clusters. Two kinds of reaction mechanisms were revealed in the formation of Agn clusters, the association mechanism for the formation of Ag2, Ag5, and Ag6 clusters and the association–isomerization mechanism for the formation of Ag3 and Ag4 clusters. Based on the canonical transition state theory, the calculated rate constants of the formation of Agn clusters displayed an odd–even effect: the rate constants of formation of Agn clusters with odd number were larger than those with even number. The rate constant of formation of Ag4 was the lowest, whereas that of Ag5 was the highest among Agn (n = 2–6) clusters. The formation of Ag4 was the most difficult step in the aggregation process of the silver clusters. The formation of Ag4 may be related with the critical point in the silver aggregation process.  相似文献   

15.
We report (1 + 1) resonance-enhanced multiphoton ionization spectra for clusters of para-fluorotoluene (pFT)n (n = 1–11). After n = 2, the spectra appear to have converged in appearance, suggestive of a dimer chromophore, with weak bonding for subsequent additions of pFT molecules. The spectra also indicate dramatic, vibrational-mode-sensitive changes of oscillator strength between the monomer and the clusters. We also briefly describe the results of probing different parts of the expansion, and varying the laser power.  相似文献   

16.
利用原子转移自由基聚合(ATRP)法和连续ATRP法合成了温度敏感型聚合物和pH/温度双重敏感型聚合物。用紫外光谱考察聚合物在水溶液中的温敏行为,发现聚合物的低临界溶解温度(LCST)可以通过单体的比例进行调控,而且聚合物的温度响应行为非常敏感且具有可逆性。pH/温度双重敏感型聚合物还具有非常灵敏的pH响应行为,且不受单体比例的影响。最后,对聚合物胶束的体外释药动力学进行了研究,结果表明聚合物胶束的环境敏感性决定了药物的释放行为。  相似文献   

17.
采用密度泛函理论(DFT)对钌掺杂的铂团簇阳离子([PtnRum]+, m + n = 3, n ≥ 1)活化甲醇C―H和O―H键反应进行了理论研究;探讨了电荷对[PtnRum]团簇反应活性的影响。电荷分析表明:(1) [Pt3]+团簇中正电荷在三个Pt原子上均匀分布;掺杂Ru原子后,正电荷主要分布在Ru原子上; (2)首先活化C―H键时[PtnRum]+的反应活性比[PtnRum]明显提高;首先活化O―H键时只有[Pt3]+比[Pt3]团簇的反应活性有明显提高。本研究可为金属团簇调控的C―H键和O―H键的活化提供更深入的理解。  相似文献   

18.
The structure and texture characteristics of the hybrid organic–inorganic adsorbents, which were obtained by using of two-component systems of “structure-forming agent/trifunctional silane”, are compared as follows: the first component is Si(OC2H5)4 or (C2H5O)3Si–A–Si(OC2H5)3, where A = –(CH2)2– or –C6H4–; the second one is alkoxysilane with amine (–NH2, NH, –NH(CH2)2NH2) and thiol (–SH) groups. The adsorbents, derived from TEOS, have more accessible functional groups (2.6–4.2 mmol/g) than xerogels, which are based on bis(triethoxysilanes) (1.0–2.6 mmol/g). On another hand xerogels derived from bis(triethoxysilanes) have a more extended porous structure (Ssp =516–968 m2/g, Vs = 0.418–1.490 cm3/g, d = 2.5–15.0 nm) than those that are based on TEOS (Ssp = 4–631 m2/g, Vs = 0.005–1.382 cm3/g, d = 2.3–17.7 nm). The geometric dimensions of functional groups have a more essential effect on the parameters of porous structure in the case of TEOS-derived xerogels. Using solid-state NMR spectroscopy, it has been shown that in synthesis of xerogels with the use of TEOS, the molecular frame of globules is formed by structural units Qn (n = 2,3,4), and the functional groups exist as structural units of Tn (n = 2,3). The xerogels obtained with using bis(triethoxysilanes) consist only of structural units of Tn-type (n = 1,2,3).  相似文献   

19.
The interactions occurring in di-urea (NHC(O)NH) cross-linked poly(oxyethylene) (POE)/siloxane hybrids (di-ureasils) doped with zinc triflate (Zn(CF3SO3)2) were investigated by Fourier Transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies. Bonding of the Zn2+ ions to the urea carbonyl oxygen atoms occurs in the entire range of compositions studied (∞ > n ≥ 1, where n, salt content, is the molar ratio of oxyethylene moieties per Zn2+ ion). At n > 20 the incorporation of the guest cations progressively reduces the number of free CO groups. At n = 20 the saturation of the urea cross-links is attained and the Zn2+ ions start to coordinate to the POE chains giving rise to the formation of a crystalline POE/Zn(CF3SO3)2 complex. The latter process occurs at the expense of the destruction of the hydrogen-bonded POE/urea structures of the host di-ureasil structure. New hydrogen-bonded associations, more ordered than the urea–urea aggregates present in the non-doped matrix and including Zn2+OC coordination, emerge in parallel. “Free” and weakly coordinated CF3SO3 ions, present in all the xerogels studied, appear to be the main charge carriers of the conductivity maximum of this family of ormolytes located at n = 60 at 30 °C. In materials with n ≤ 20 contact ion pairs, “cross-link separated” ions pairs and higher ionic aggregates appear. The data reported demonstrate that the behaviour of the di-ureasils doped with triflate salts depends on the type of cation.  相似文献   

20.
This short review is concerned with sustainable chemistry and recent research progress in catalysis systems for the use of aqueous hydrogen peroxide or dioxygen. Some achievements in the development of catalysts for epoxidations and for carbon–carbon bond cleavage are presented. Special emphasis is placed on fully inorganic systems, some with the dimeric moiety [M2O2(μ-O2)2(O2)2], (M = V, Mo, W) which have more scope than those containing organic ligands or supports, however robust. Oxoperoxometalate species with or without assembling ligands can be used for homogeneous, two-phase and phase-transfer catalyses and to prepare mesoporous materials (M-MCM-41, M-SBA-15, etc.) and supported catalysts for effective immobilization of activated metal peroxo complexes. Moreover, the decomposition of molybdenum and vanadium oxoperoxo species in water and phosphoric acid leads to an elegant method for preparing H3+n[PMo12−nVnO40]·aq (n = 2–9) at room temperature, avoiding the tedious synthesis with diethyl ether extraction. Spectrometric, structural and reactivity data on the precursor complexes lead to a more rational approach to catalysis systems and to the discovery of novel classes of precursors and/or catalysts for the selective transfer of oxygen to organic substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号