首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The first experimental study of the evolution of a coherent electron-hole (e-h) BCS-like state in bulk GaAs at room temperature is presented. We explicitly demonstrate that the total spontaneous emission from e-h pairs located within the conduction and valence bands approaches zero when the radiative recombination of the e-h BCS state occurs. This confirms that a vast majority of electrons and holes available are condensed at the very bottoms of the bands and form the BCS state. The average lifetime of this state is measured to be around 300 fs. We also show that the coherence of electrons and holes of the BCS state is preserved for a much longer time compared to the intraband relaxation time T2.  相似文献   

2.
The energy spectra of electrons are calculated in the adiabatic approximation when the excited 2s, 2p, and 3d states of the hydrogen atom are ionized by a superstrong ultrashort laser pulse.  相似文献   

3.
The validity of an inductive resonance theory of energy transfer from the T 1S 0 transition dipole to overtone vibrations of molecular groups containing H and D atoms is experimentally tested for a series of compounds whose conjugation systems are similar in size. To this end, by using kinetic, spectral, and luminescent methods (measurements of the phosphorescence decay times, phosphorescence spectra, ratios between the quantum yields of phosphorescence and fluorescence at 77 K, total quantum yields of fluorescence at 293 K, and ratios between the quantum yields of fluorescence at 293 and 77 K), the deactivation processes of the lowest excited T 1 and S 1 states of seven emitting centers (naphthalene, its hydroxy and dihydroxy derivatives, and their monoanions) in solutions in ethanol-h 6, ethanol-d 6, and their 2: 1 mixtures with diethyl ether are studied. For all the compounds studied, the rate constants k r of the radiative T 1S 0 transition and the changes in the overlap integrals of the spectra of phosphorescence and absorption of overtones of CH stretching vibrations are determined. The rate constants of energy transfer k dd(CH) from the T 1S 0 transition dipole to the stretching vibrations of the CH bonds are calculated without regard for the changes in the localization and orientation of this transition dipole in the compounds under study. The contribution of an individual CH group k nr(CH) to the total rate constant of nonradiative deactivation of the T 1 state averaged over the CH groups of the naphthalene ring system is ascertained. A good correlation between the changes in the constants k nr(CH) and k dd(CH) in the series of the hydroxy derivatives of naphthalene is found, which is indicative of the inductive resonance mechanism of the energy degradation of the T 1 state. The deviations from proportionality between the changes in these constants upon passing from naphthalene to its hydroxy derivatives, which correlate with a marked increase in the radiative constant k nr of the hydroxy derivatives in comparison with naphthalene, indicate changes in the strength and localization of the T 1S 0 transition dipole moment and in its orientation with respect to the plane of the molecule that occur due to introduction of a heteroatom, oxygen, whose lone pair of electrons enters into conjugation with the πelectrons of the naphthalene ring system.  相似文献   

4.
The experimental measurement data on the fine structure of beta-decay strength function Sβ(E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in Sβ(E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in Sβ(E) are split into two components from the axial nuclear deformation. In this report, the fine structure of Sβ(E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in Sβ(E) of β+/EC-decay), and of protons against neutron holes (peaks in Sβ(E) of β-decay) is discussed.  相似文献   

5.
Low-temperature (T = 1.6 K) photoluminescence (PL) of individual CdSe/ZnSe/ZnMnSe quantum dots (QDs) with different magnitudes of the sp-d exchange interaction between the magnetic impurity ions and charge carriers has been studied in a magnetic field up to 12 T applied in the Faraday and Voigt geometry. The magnitude of the interaction was controlled by changing the fraction (ηe, h) of the squared wave function of charge carriers in the semimagnetic barrier by means of variation of the nonmagnetic (ZnSe) layer thickness. It is established that the sp-d exchange interaction leads to a change in the sign of the effective hole g factor even for ηe, h ~ 5%, while further increase in the interaction magnitude is accompanied by a rapid growth in the magnitude of spin splitting for both electrons and holes. The quantum yield of PL exhibits a significant decrease due to nonradiative Auger recombination with the excitation of Mn ions only for ηe, h ~ 12%, while the rate of the holes spin relaxation starts growing only for still higher ηe, h values. In a strong magnetic field perpendicular to the sample plane, the alignment of Mn spins leads to suppression of the Auger recombination only in the excited spin state. For a small rate of the hole spin relaxation, this leads to a rather unusual result: the emission from an excited trion state predominates in strong magnetic fields.  相似文献   

6.
A method for taking into account hard-photon emission in four-fermion processes proceeding in the s channel is described. The application of this method is exemplified by numerically estimating one-loop electroweak corrections to observables (cross sections and asymmetries) of the reaction e?e+μ?μ+(γ) involving longitudinally polarized electrons and proceeding at energies below the Z-resonance energy.  相似文献   

7.
The spin-selective photokinetics of a single matrix-isolated impurity molecule with a triplet-triplet optical transition, T 0T 1, is considered and the manifestations of the photokinetics in the fluorescence excitation spectra and intensity autocorrelation functions g (2)(τ) of the molecule undergoing narrow-band optical excitation is studied to resolve the fine structure of the transition. The rates of intersystem crossings (ISCs) T 1ST 0 to and from a nonradiating singlet state S of the molecule and the rate of population relaxation among the ground (T 0) state sublevels can be obtained from the spectra and g (2)(τ) using the analytical expressions obtained. New experiments on an individual NV defect center in nanocrystals of diamond, where, for the first time, the fine structure of its triplet-triplet 3 A-3 E zero-phonon optical transition (~637 nm) at 1.4 K was resolved, are interpreted. It is concluded that the rate of the ISC transition from the m S =0 sublevel of the excited 3 E state to the singlet 1 A state (~1 kHz) is much slower than the rates from the m S =±1 substates, while the rates of ISC transitions to different m S substates of the ground 3 A state are close to each other (~1 Hz). As a result, only the optical transition between m S =0 sublevels in the 3 A-3 E manifold contributes strongly to the fluorescence. The experimentally observed double-exponential decay of the g (2)(τ) function is explained by the two pathways available to the center for it to leave the S state: (i) the ST 0(m S )=0) transition and (ii) the ST 0(m S =±1) transitions followed by the slow spin-lattice relaxation T 0(m S =±1)→T 0(m S =0) (rate ~0.1 Hz). The work is important for studies where the NV center is used as a single photon source or for quantum information processing.  相似文献   

8.
In this paper, we have proposed S U(2) non-Abelian electromagnetism gauge theory. In the theory, photon has self-interaction and interaction between them, which can explain photon entanglement phenomenon in quantum information. Otherwise, we find there are three kinds photons γ +, γ ? and γ 0, they have electric charge + e γ , ? e γ and 0, respectively, these prediction are accordance with some experiment results.  相似文献   

9.
We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film’s surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron–phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (T e for the electrons temperature and T ph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, T e ) or (d, T ph ), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find PT e 3.5 T ph 3.5 . From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.  相似文献   

10.
In this paper, we introduce and discuss the robustness of contextuality (RoC) RC(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved. (i) An empirical model e is contextual if and only if RC(e) > 0; (ii) the RoC function RC is convex, lower semi-continuous and un-increasing under an affine mapping on the set EM of all empirical models; (iii) e is non-contextual if and only if C(e) = 0; (iv) e is contextual if and only if C(e) > 0; (v) e is strongly contextual if and only if C(e) = 1. Also, a relationship between RC(e) and C(e) is obtained. Lastly, the RoC of three empirical models is computed and compared. Especially, the RoC of the PR boxes is obtained and the supremum 0.5 is found for the RoC of all no-signaling type (2, 2, 2) empirical models.  相似文献   

11.
Data from the Tien Shan array Adron on the dependence of the lateral distributions of the electron-photon component (age parameter S) in extensive air showers of cosmic rays on the number of electrons, N e , which is a quantity that characterizes the primary-nucleus energy E0, are subjected to a comparative analysis. The distributions in question are given both for all showers and for showers accompanying high-energy gamma rays and hadrons in x-ray emulsion chambers. According to calculations, events associated with the latter are generated predominantly by primary protons, and this makes it possible to assess their role at various values of E0. The distributions with respect to S suggest a significant fraction of light nuclei, predominantly protons, in the region after the knee in the spectrum for N e >106, at least up to N e =5.6×106 (E0 ~ 10 PeV).  相似文献   

12.
The works dealing with the theory of e+e pair production from vacuum under the action of highintensity laser radiation are reviewed. The following problems are discussed: pair production in a constant electric field E and time-variable homogeneous field E(t); the dependence of the number of produced pairs \({N_{{e^ + }{e^ - }}}\) on the shape of a laser pulse (dynamic Schwinger effect); and a realistic three-dimensional model of a focused laser pulse, which is based on exact solution of Maxwell’s equations and contains parameters such as focal spot radius R, diffraction length L, focusing parameter Δ, pulse duration τ, and pulse shape. This model is used to calculate \({N_{{e^ + }{e^ - }}}\) for both a single laser pulse (n = 1) and several (n ≥ 2) coherent pulses with a fixed total energy that simultaneously “collide” in a laser focus. It is shown that, at n ? 1, the number of pairs increases by several orders of magnitude as compared to the case of a single pulse. The screening of a laser field by the vapors that are generated in vacuum, its “depletion,” and the limiting fields to be achieved in laser experiments are considered. The relation between pair production, the problem of a quantum frequency-variable oscillator, and the theory of groups SU(1, 1) and SU(2) is discussed. The relativistic version of the imaginary time method is used in calculations. In terms of this version, a relativistic theory of tunneling is developed and the Keldysh theory is generalized to the case of ionization of relativistic bound systems, namely, atoms and ions. The ionization rate of a hydrogen-like ion with a charge 1 ≤ Z ≤ 92 is calculated as a function of laser radiation intensity (F and ellipticity ρ.  相似文献   

13.
The most important experimental results in charmonium physics in the energy region above the threshold for open-charm production that were obtained in recent years are surveyed. The first measurements of the exclusive cross sections for e + e ?D \(\bar D\), D \(\bar D\)*, and D* \(\bar D\)* processes are discussed along with the discovered decay ψ(4415) → \(\bar D_2^* \)(2460). The properties of charmonium-like states, including the group of states Y (4260), Y (4325), and Y (4660) with quantum numbers of J PC = 1??; the X(3940) and X(4160) states discovered in the process of double charmonium production in e + e ? annihilation; and the X(3872), Y(3940), and Z ±(4430) states found in B-meson decays, are presented.  相似文献   

14.
15.
Temperature m(T) and time m(t) dependences of the magnetic moment of GaMnSb thin films with MnSb clusters have been measured. The m(t) dependences are straightened in semilogarithmic coordinates m(lnt). The temperature dependences of magnetic viscosity S(T) corresponding to the slope of straight lines m(lnt) have been studied. It have been demonstrated that the behavior of dependences S(T) is governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters. It have been found that the behavior of dependences m(T) measured after the films were cooled in zero magnetic field and in magnetic field H = 10 kOe is also governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters.  相似文献   

16.
The energy distribution of secondary electrons emitted from a highly degassed polycristalline Pt surface was investigated as a function of low energy (V p ) primary electrons 5<V p <150eV. The measurements were carried out in an UHV of better than 10?10 mm Hg. The dependence of the numberN S (Ev) of secondary electrons of a fixed energyE v (3<E v <12eV) on the energyV p of the primaries (=isochromates) is studied. A lot of observations can be detected:
  1. I.
    The exit depth of true secondary electrons is strongly dependent of their energy.  相似文献   

17.
Showers generated by electrons of 200 and 440 MeV energy in single lead plates of 2, 5, and 10 radiation lengths are measured in scintillator material (NE 102 A) varying between 1.24 and 10.5 g/cm2. The mean energy deposited in a scintillator is derived fromNagel's Monte-Carlo calculations. The photon contributionn γ to the total pulseheight is of the order 15% near shower maximum tmax, it dominates the electron contributionn e in a 3 cm thick scintillator for shower depthst ≧ 4.2 · tmax. The slope of the total ionizationn e+n γ behind the shower maximum can be approximated byn(t) ~ exp(?0.264t). The shower absorption in scintillator depends on the thicknessx (g/cm2) as exp (?0.068x). An arrangement of counter trays, scintillators and lead plates is calibrated with electrons between 100 and 440 MeV energy. A suitably defined track-lengthS is shown to give minimum error in energy measurement and to depend linearly on electron energy. The track-length constant of 22 MeV/r.l. is compared with the results of other authors.  相似文献   

18.
The density functional theory is used to calculate the energy of an electron–hole liquid in Si/Si1–xGex/Si quantum wells. Three one-dimensional nonlinear Schrödinger equations for electrons and light and heavy holes are solved numerically. It is shown that, in shallow quantum wells (small x), both light and heavy holes exist in the electron–hole liquid. Upon an increase in the Ge content, a transition to a state with one type of holes occurs, with the equilibrium density of electron–hole pairs decreasing by more than a factor of 2.  相似文献   

19.
B Singh  P S Tarsikka  L Singh 《Pramana》2002,59(4):653-661
Studies of dielectric relaxation and ac conductivity have been made on three samples of sodium tungsten phosphate glasses over a temperature range of 77–420 K. Complex relative permitivity data have been analyzed using dielectric modulus approach. Conductivity relaxation frequency increases with the increase of temperature. Activation energy for conductivity relaxation has also been evaluated. Measured ac conductivity (σm(ω)) has been found to be higher than σdc at low temperatures whereas at high temperature σm(ω) becomes equal to σdc at all frequencies. The ac conductivity obeys the relation σac(ω)=Aω S over a considerable range of low temperatures. Values of exponent S are nearly equal to unity at about 78 K and the values decrease non-linearly with the increase of temperature. Values of the number density of states at Fermi level (N(E F)) have been evaluated at 80 K assuming values of electron wave function decay constant α to be 0.5 (Å)?1. Values of N(E F) have the order 1020 which are well within the range suggested for localized states. Present values of N(E F) are smaller than those for tungsten phosphate glasses.  相似文献   

20.
A formula for the relaxation time of Josephson plasmons on random quantum jumpers, i.e., quantum resonant-percolation trajectories (QRPT) in a disordered I-layer of a tunnel SIS junction is derived. Domain Ωr (μ ? E0, c), in which the strongest plasmon damping takes place, is plotted in the plane of parameters (μ ? E0, c).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号