首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two new bithiazole derivatives, 2,2'-bis(3,6,9-triazanonyl)- and 2,2'-bis(3,7,11-triazaundecyl)-4,4'-bithiazoles (3a, b), were readily synthesized in six steps using the corresponding dialkylenetriamine as starting materials. Under physiological conditions, 5.0 microM 3a exhibited significant DNA cleavage activity in the presence of Co(II), whereas even at 50 micriM, 3b exhibited no DNA cleavage activity. Furthermore, it was demonstrated that 3a forms a 1 : 2 complex with Co(II) ions, whereas 3b does not. These conclusions were based on measurements of stoichiometries of the bithiazole-cobalt complexes obtained by the Job continuous variation method. In contrast, 3a, which contains diethylenetriamine moieties, showed decreased affinity for Calf Thymus (CT) DNA compared with that of 3b, which contains dipropylenetriamine moieties. These findings indicate that the structure of the two aminoalkyl side chains attached at the 2- and 2'-positions of the 4,4'-bithiazole ring significantly influence the formation of cobalt complexes, and affects the compound's ability to cleave DNA as well as its affinity for double-stranded DNA.  相似文献   

2.
Three new mononuclear cobalt(II) complexes containing ligands with extended planar quinoxaline moieties, {dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) or dipyrido[3,2‐d:2′,3′‐f]quinoxaline (dpq)}, viz. [Co(dppz)(acac)2] · CH3OH ( 1 ), [Co(dpq)(tfnb)2] ( 2 ) and [Co(dpq)(dbm)2] ( 3 ), where acac = acetylacetonate, tfnb = benzoyltrifluoroacetone and dbm = dibenzoylmethane, have been synthesized and structurally characterized as octahedral complexes. The binding ability of the complexes with calf thymus (CT)‐DNA has been investigated by spectroscopic and viscosity measurements. Results indicate that all complexes bind to CT‐DNA via intercalative mode, and the DNA binding affinity of dppz complex 1 is apparently stronger than that of dpq complexes 2 and 3 . Furthermore, DNA photocleavage experiments indicate that these complexes are efficient DNA cleaving agents in UV‐A (365 nm) and hydroxyl radical (HO·), singlet oxygen (1O2) and superoxide anion (1O2?) serve as the major cleavage active species. In addition, interaction of the complexes with bovine serum albumin (BSA) was investigated using UV ? visible and fluorescence methods, which indicated that all complexes could quench the intrinsic fluorescence of BSA in a static quenching process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Two types of distamycin-linked hydroxamic acids (DHA), which contain various lengths of polymethylene chains (PM-DHA) and relatively rigid phenylene ones (Ph-DHA), have been synthesized for the first time. Their DNA cleavage specificities were investigated by an end-labeled fragment cleavage experiment in the presence of vanadyl ion and hydrogen peroxide. The DNA cleavage by the PM-DHA x VO(II) complexes was shown to be very dependent on the length of the chain and the AT sequences. The tetramethylene DHA (1b) complex exhibited highly specific cleavage patterns flanking the 8 and 10 AT sites. Interestingly, the Ph-DHA complexes selectively cleaved the 5' end-labeled strand at the AT sites, but did not cleave the 3' end-labeled strand. The vanadyl complexing moieties and the local sequence conformation of the AT tract are suggested to contribute significantly to the DNA recognition of the PM-DHA x VO(II) complexes.  相似文献   

4.
A series of mononuclear mixed ligand copper(II) complexes [Cu(bba)(diimine)](ClO(4))(2)1-4, where bba is N,N-bis(benzimidazol-2-ylmethyl)amine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. The coordination geometry around copper(II) in 2 is described as square pyramidal with the two benzimidazole nitrogen atoms of the primary ligand bba and the two nitrogen atoms of phen (2) co-ligand constituting the equatorial plane and the amine nitrogen atom of bba occupying the apical position. In contrast, the two benzimidazole nitrogen atoms and the amine nitrogen atom of bba ligand and one of the two nitrogen atoms of 5,6-dmp constitute the equatorial plane of the trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry of 3 with the other nitrogen atom of 5,6-dmp occupying the apical position. The structures of 1-4 have been optimized by using the density functional theory (DFT) method at the B3LYP/6-31G(d,p) level. Absorption spectral titrations with Calf Thymus (CT) DNA reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (4) > 5,6-dmp (3) > phen (2) > bpy (1). The DNA binding affinity of 4 is higher than 2 revealing that the π-stacking interaction of the dpq ring in between the DNA base pairs with the two bzim moieties of the bba ligand stacked along the DNA surface is more intimate than that of phen. The complex 3 is bound to DNA more strongly than 1 and 2 through strong hydrophobic interaction of the methyl groups on 5,6-positions of the phen ring in the DNA grooves. The extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes parallels the trend in DNA binding affinities. The large enhancement in relative viscosity of DNA upon binding to 3 and 4 supports the DNA binding modes proposed. Interestingly, the 5,6-dmp complex 3 is selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that it induces a B to A conformational change. In contrast, 2 and 4 show induced CD responses indicating their involvement in strong DNA binding. Interestingly, only the dpq complex 4, which displays the strongest DNA binding affinity and is efficient in cleaving DNA in the absence of an activator with a rate constant of 5.8 ± 0.1 h(-1), which is higher than the uncatalyzed rate of DNA cleavage. All the complexes exhibit oxidative DNA cleavage ability, which varies as 4 > 2 > 3 > 1 (ascorbic acid) and 3 > 2 > 4 > 1 (H(2)O(2)). Also, the complexes cleave the protein bovine serum albumin in the presence of H(2)O(2) as an activator with the cleavage ability varying in the order 3 > 4 > 2 > 1. The highest efficiency of 3 to cleave both DNA and protein in the presence of H(2)O(2) is consistent with its strong hydrophobic interaction with the biopolymers. The IC(50) values of 1-4 against cervical cancer cell lines (SiHa) are almost equal to that of cisplatin, indicating that they have the potential to act as effective anticancer drugs in a time-dependent manner. The morphological assessment data obtained by using acridine orange/ethidium bromide (AO/EB) and Hoechst 33258 staining reveal that 3 induces apoptosis much more effectively than the other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complex induces DNA fragmentation more efficiently than others.  相似文献   

5.
A new tetradentate diimine–dioxime ligand containing a donor set of N4, and its homo-, heterodinuclear and homotrinuclear copper(II) complexes were prepared and characterized on the basis of their elemental analysis, FT-IR, 1H and 13C NMR spectra, molar conductivity and magnetic moment measurements. The extraction ability of N,N′′-bis[1-biphenyl-2-hydroxyimino-1-ethylidene]-diethylenetriamine was also evaluated in chloroform by using several transition metal picrates such as Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II) and Hg(II). It has been seen that the ligand shows strong binding ability toward the copper(II) ion. Moreover, the catalytic activities of the complexes for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The synthesized complexes display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity. The interaction between these complexes and DNA has also been investigated by agarose gel electrophoresis. We found that the homo- and heterodinuclear copper complexes can cleave supercoiled pBR322 DNA to nicked and linear forms. The dinuclear complexes including phenanthroline (24), with H2O2 as a co-oxidant, exhibited the strongest cleaving activity.  相似文献   

6.
Five new mononuclear zinc(II) complexes containing ligands with extended planar phenanthroline moieties (dipyrido‐[3,2‐a:2′,3′‐c]phenazine (dppz) or dipyrido[3,2‐d:2′,3′‐f] quinoxaline (dpq)), namely [Zn(dppz)(acac)2]⋅CH3OH ( 1 ), [Zn(dppz)(dbm)(OAc)] ( 2 ), [Zn(dpq)(dbm) (OAc)] 1.5H2O ( 3 ), [Zn(dpq)(tfnb)(OAc)] ( 4 ) and [Zn(dpq)(tfnb)2] ( 5 ), where acac = acetylacetonate, tfnb = benzoyltrifluoroacetone and dbm = dibenzoylmethane, were synthesized and structurally characterized. The binding ability of complexes 1 – 5 with calf thymus DNA was investigated by spectroscopic titration methods and viscosity measurements. Results indicate that all complexes bind to calf thymus DNA via intercalative mode, and the DNA binding affinities of dppz complexes 1 and 2 are apparently stronger than those of dpq complexes 3 – 5 . DNA photocleavage experiments reveal that these complexes are efficient DNA cleaving agents and they are more active in UV‐A (365 nm) than in visible light. In particular, the in vitro cytotoxicity of the complexes for human cancer cell line A549 demonstrates that the five compounds have anticancer activity with low IC50 values. Meanwhile, interaction of the complexes with bovine serum albumin investigated using UV–visible and fluorescence methods indicates that all complexes can quench the intrinsic fluorescence of bovine serum albumin in a static quenching process.  相似文献   

7.
The synthesis and characterisation of the new macrocyclic ligand 6-methyl-2,6,10-triaza-[11]-12,25-phenathrolinophane (L1), which contains a triamine aliphatic chain linking the 2,9 positions of 1,10-phenanthroline and of its derivative L2, composed by two L1 moieties connected by an ethylenic bridge, are reported. Their basicity and coordination properties toward Cu(II), Zn(II), Cd(II), Pb(II) and Hg(II) have been studied by means of potentiometric and spectroscopic (UV-Vis, fluorescence emission) measurements in aqueous solutions. L1 forms 1:1 metal complexes in aqueous solutions, while L2 can give both mono- and dinuclear complexes. In the mononuclear L2 complexes the metal is sandwiched between the two cyclic moieties. The metal complexes with L1 and L2 do not display fluorescence emission, due to the presence of amine groups not involved in metal coordination. These amine groups can quench the excited fluorophore through an electron transfer process. The ability of the Zn(II) complexes with L1 and L2 to cleave the phosphate ester bond in the presence has been investigated by using bis(p-nitrophenyl)phosphate (BNPP) as substrate. The dinuclear complex with L2 shows a remarkable hydrolytic activity, due to the simultaneous presence within this complex of two metals and two hydrophobic units. In fact, the two Zn(II) act cooperatively in substrate binding, probably through a bridging interaction of the phosphate ester; the interaction is further reinforced by pi-stacking pairing and hydrophobic interactions between the phenanthroline unit(s) and the p-nitrophenyl groups of BNPP.  相似文献   

8.
The zinc(II) complexes reported here have been synthesised from the ligand 4-methyl-2-N-(2-pyridylmethyl)aminophenol (Hpyramol) with chloride or acetate counterions. All the five complexes have been structurally characterised, and the crystal structures reveal that the ligand Hpyramol gradually undergoes an oxidative dehydrogenation to form the ligand 4-methyl-2-N-(2-pyridylmethylene)aminophenol (Hpyrimol), upon coordination to Zn(II). All the five complexes cleave the phiX174 phage DNA oxidatively and the complexes with fully dehydrogenated pyrimol ligands were found to be more efficient than the complexes with non-dehydrogenated Hpyramol ligands. The DNA cleavage is suggested to be ligand-based, whereas the pure ligands alone do not cleave DNA. The DNA cleavage is strongly suggested to be oxidative, possibly due to the involvement of a non-diffusible phenoxyl radical mechanism. The enzymatic religation experiments and DNA cleavage in the presence of different radical scavengers further support the oxidative DNA cleavage by the zinc(II) complexes.  相似文献   

9.
The dinuclear copper(II) complexes [Cu(2)(LH)(2)(diimine)(2)(ClO(4))(2)](ClO(4))(2) (1-4), where LH = 2-hydroxy-N-[2-(methylamino)ethyl]benzamide and diimine = 2,2'-bipyridine (bpy; 1), 1,10-phenanthroline (phen; 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp; 3), and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq; 4), have been isolated and characterized. The X-ray crystal structure of complex 1 contains two copper(II) centers bridged by the phenolate moiety of the amide ligand. All of the complexes display a ligand-field band (630-655 nm) and the PhO(-)-to-Cu(II) ligand-to-metal charge-transfer band (405-420 nm) in solution. Absorption and emission spectral studies and viscosity measurements indicate that complex 4 interacts with calf thymus DNA more strongly than all of the other complexes through strong partial intercalation of the extended planar ring (dpq) with a DNA base stack. Interestingly, 3 exhibits a DNA binding affinity higher than 2, suggesting the involvement in hydrophobic interaction of coordinated 5,6-dmp with the DNA surface. In contrast to the increase in relative viscosities of DNA bound to 2-4, a decrease in viscosity of DNA bound to 1 is observed, indicating a shortening of the DNA chain length through formation of kinks or bends. All of the complexes exhibit an ability to cleave DNA (pUC19 DNA) in a 5% DMF/5 mM Tris-HCl/50 mM NaCl buffer at pH 7.1 in the absence of an oxidant at 100 μM complex concentration, which varies as 4 > 2 > 1 > 3. The order of DNA the cleavage ability at 30 μM concentration in the presence ascorbic acid is 4 > 2 > 1 > 3, and, interestingly, 4 alone shows an ability to convert supercoiled DNA into nicked-coiled DNA even at 6 μM concentration, beyond which complete degradation is observed and the pathway of oxidative DNA cleavage involves hydroxyl radicals. In the presence of distamycin, all of the complexes, except 3, show decreased DNA cleavage activity, suggesting that the complexes prefer to bind in the DNA minor groove. All of the complexes exhibit prominent DNA cleavage even at very low concentrations (nM) in the presence of H(2)O(2) as an activator, with the order of cleavage efficiency being 3 > 2 > 4 > 1. Studies on the anticancer activity toward HEp-2 human larynx cell lines reveal that the ability of the complexes to kill the cancer cell lines varies as 3 > 4 > 2 > 1. Also, interestingly, the IC(50) value of 3 is lower than that of cisplatin, suggesting that the hydrophobicity of methyl groups on the 5 and 6 positions of the complex enhances the anticancer activity. The mode of cell death effected by the complex has been explored by using various biochemical techniques like comet assay, mitochondrial membrane potency, and Western blotting. The complex has been found to induce nuclear condensation and fragmentation in cell lines. Also, it triggers activation of caspases by releasing cytochrome c from mitochondria to cytosol, suggesting that it induces apoptosis in cells via the mitochondrial pathway.  相似文献   

10.
The complexes [Co(diimine)(3)](ClO(4))(2)1-3 and [Ni(diimine)(3)](ClO(4))(2)4-6, where diimine = 1,10-phenanthroline (phen) (1,4), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (2,5) and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (3,6), have been isolated, characterized and their interaction with CT DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Co(5,6-dmp)(3)](ClO(4))(2)2 and rac-[Ni(5,6-dmp)(3)](ClO(4))(2)5 have been determined and the isostructural and also isomorphous complex cations possess distorted octahedral coordination geometries. The absorption spectral titrations of the complexes with DNA reveal that the CT DNA binding affinity (K(b)) of the complexes varies as 3>2>1; 6>5>4. The Ni(II) complexes display DNA binding stronger than the corresponding Co(II) analogues, which is expected of their bigger sizes. The higher DNA binding affinity of 3 and 6 is due to the involvement in partial insertion of the extended phen ring in between the DNA base pairs. In contrast, 2 and 5 interact with DNA in the major groove through hydrophobic forces involving the methyl groups on the 5,6 positions of phen ring. An enhancement in relative viscosities of DNA upon binding to 1-6 is consistent with the DNA binding affinities. The CD spectral studies show only an induced CD band on the characteristic positive band of CT DNA for both the phen (1,4) complexes. In contrast, the 5,6-dmp (2,5) and dpq (3,6) complexes bound to CT DNA exhibit biphasic CD signals in place of the positive CD band and the negative helicity band disappears. This reveals that the complexes bind to DNA enantiopreferentially and effect changes in secondary structure of DNA. The CV and DPV responses indicate that the DNA-bound dpq complexes are stabilized in the lower oxidation state of Co(II) more than in the Co(III) oxidation state. The prominent DNA cleavage abilities of 1-3 observed in the presence of H(2)O(2) (200 μM) follows the order 2>1>3 with efficiencies of more than 90% even at 10 μM complex concentration. Interestingly, Ni(II) complexes 4-6 exhibit higher cytotoxicity (IC(50): 1, 28.0; 2, 15.0; 3, 20.0; 4, 8.0; 5, 2.0; 6, 2.0 μM at 48 h; IC(50): 1, 30.0; 2, 20.0; 3, 25.0; 4, 10.0; 5, 3.0; 6, 3.0 μM at 24 h) against human breast cancer (MCF 7) cell lines than the Co(II) complexes 1-3 as well as cisplatin in spite of their inability to cleave DNA. Also, the 5,6-dmp complex 5 shows cytotoxicity higher than the dpq complex 6 at 24 h incubation time and both 5 and 6 display apoptotic and necrotic modes of cell death.  相似文献   

11.
The macrocyclic polyamine 2,5,8,11,14-pentaaza[15]-[15](2,9)[1,10]phenanthrolinophane (neotetren) is studied in its ability to coordinate Cu(ii) even at very low pH values and to interact, as a metal complex, with DNA. The kinetics and equilibria for 1 : 1 and 2 : 1 metal-ligand complexes formation are studied by the stopped-flow method and UV spectrophotometry. Differently protonated complexes are formed, with rate constants much lower than that of water exchange at copper(II) and other Cu(II)/amine systems, this behaviour being ascribed to ring effects and intra-molecular hydrogen bonds. Concerning the DNA/copper(II)-neotetren complexes interaction, analysis of data suggests an intercalative mode of binding. The kinetic results for both DNA/CuL and DNA/Cu(2)L systems agree with the sequence D + S <-->D,S <-->DS where the metal complexes (D) react with the DNA sites (S) leading to fast formation of an externally bound form (D,S) which is converted into an intercalated complex (DS). A very slow process is also detected and ascribed to a conformational change in the polynucleotide secondary structure where the metal centre plays a crucial role. Chromatographic experiments demonstrate that both the investigated Cu(II)/L complexes are able to cleave DNA, but only in the presence of hydrogen peroxide.  相似文献   

12.
Ternary copper(II) complexes [Cu(py2phe)B](ClO4)2 (1-3), where py2phe is a tripodal ligand N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine and B is a heterocyclic base (viz., 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2), or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3)), are prepared and their DNA-binding and photoinduced DNA-cleavage activities are studied. Complex 1 has been structurally characterized by single crystal X-ray crystallography. The molecular structure shows an axially elongated square-pyramidal (4 + 1) coordination geometry in which the phen ligand binds at the basal plane. The tripodal ligand py2phe displays an axial-equatorial binding mode with the amine nitrogen bonded at the axial site. A chemically significant CH-pi interaction involving the CH moiety of the phenyl group of the tripodal ligand and the aromatic ring of phen is observed. The complexes display good binding propensity to calf thymus DNA giving a relative order of 3 (dppz) > 2 (dpq) > 1 (phen). The DNA binding constants (K(b)) for 1-3, determined from absorption spectral studies, are 6.2 x 10(3), 1.0 x 10(4), and 5.7 x 10(4) M(-1), respectively. The complexes show chemical nuclease activity in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl radicals as the cleavage active species. The photoinduced DNA-cleavage activity of the complexes has been studied using UV radiation of 365 nm and red light of 632.8 and 694 nm. The phen complex in absence of any photosensitizing moiety does not show any DNA cleavage upon photoirradiation. The dpq and dppz ligands with their photoactive quinoxaline and phenazine moieties display significant photoinduced DNA-cleavage activity. The dppz complex is more active than its dpq analogue because of the better steric protection of the DNA-bound photosensitizing dppz ligand from the solvent molecules. Control experiments reveal the formation of singlet oxygen in the light-induced DNA-cleavage reactions. The observed efficient photoinduced DNA-cleavage activity of 2 and 3 is akin to the "light switch" effect known for the tris-chelates of ruthenium(II).  相似文献   

13.
This paper reports on the synthesis and characterization of two new ternary copper(II) complexes: [Cu(doxycycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (1) and [Cu(tetracycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (2). These compounds exhibit a distorted tetragonal geometry around copper, which is coordinated to two bidentate ligands, 1,10-phenanthroline and tetracycline or doxycyline, a water molecule, and a perchlorate ion weakly bonded in the axial positions. In both compounds, copper(II) binds to tetracyclines via the oxygen of the hydroxyl group and oxygen of the amide group at ring A and to 1,10-phenanthroline via its two heterocyclic nitrogens. We have evaluated the binding of the new complexes to DNA, their capacity to cleave it, their cytotoxic activity, and uptake in tumoral cells. The complexes bind to DNA preferentially by the major groove, and then cleave its strands by an oxidative mechanism involving the generation of ROS. The cleavage of DNA was inhibited by radical inhibitors and/or trappers such as superoxide dismutase, DMSO, and the copper(I) chelator bathocuproine. The enzyme T4 DNA ligase was not able to relegate the products of DNA cleavage, which indicates that the cleavage does not occur via a hydrolytic mechanism. Both complexes present an expressive plasmid DNA cleavage activity generating single- and double-strand breaks, under mild reaction conditions, and even in the absence of any additional oxidant or reducing agent. In the same experimental conditions, [Cu(phen)(2)](2+) is approximately 100-fold less active than our complexes. These complexes are among the most potent DNA cleavage agents reported so far. Both complexes inhibit the growth of K562 cells with the IC(50) values of 1.93 and 2.59 μmol L(-1) for compounds 1 and 2, respectively. The complexes are more active than the free ligands, and their cytotoxic activity correlates with intracellular copper concentration and the number of Cu-DNA adducts formed inside cells.  相似文献   

14.
Two new Schiff base-hydrazones bearing furan ring, (Z)-4-butoxy-N′-(furan-2-ylmethylene)benzohydrazide (IV) and (Z)-N′-(furan-2-ylmethylene)-4-(hexyloxy)benzohydrazide (V), as well as their Cu(II), Ni(II), and Zn(II) complexes have been synthesised and characterised. The DNA-binding and DNA-cleavage activities of both aroylhydrazone ligands and their transition metal complexes were examined using UV-VIS titration and agarose gel electrophoresis in the presence of an oxidative agent (H2O2). The results indicate that the copper complexes bind significantly to calf thymus DNA and effectively cleave pBR322 DNA whereas the nickel and zinc complexes interact slightly with DNA.  相似文献   

15.
Quinoxaline, found in antitumor quinoxaline antibiotics, was found to cleave double stranded DNA at the 5' side guanine of 5'-GG-3' site on irradiation with long wavelength UV light without any additive; furthermore, a bis(quinoxaline-carbohydrate) hybrid system was very effective for DNA cleavage.  相似文献   

16.
Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.  相似文献   

17.
The hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode. Experiments with supercoiled plasmid DNA show that both complexes can cleave DNA at neutral pH, where the L1 and L2 complexes display a similar reactivity. Conversely, the pH-dependence of their cleavage ability is remarkably different. The reactivity of the mononuclear complex, in fact, decreases with pH while that of the dinuclear one is enhanced at alkaline pH values. The efficiency of the two complexes in DNA cleavage at different pH values was elucidated by means of a quantum mechanics/molecular mechanics (QM/MM) study on the adducts between DNA and the different complexed species present in solution.  相似文献   

18.
Ternary copper(II) complexes [Cu(L1)B](ClO4) (1, 2) and [Cu(L2)B](ClO4) (3, 4), where HL1 and HL2 are tridentate NSO- and ONO-donor Schiff bases and B is a heterocyclic base, viz. dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 1 and 3) or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 2 and 4), were prepared and their DNA binding and photoinduced DNA cleavage activity studied. Complex 1, structurally characterized by single-crystal X-ray crystallography, shows an axially elongated square-pyramidal (4 + 1) coordination geometry in which the monoanionic L1 binds at the equatorial plane. The NN-donor dpq ligand exhibits an axial-equatorial binding mode. The complexes display good binding propensity to calf thymus DNA, giving a relative order 2 (NSO-dppz) > 4 (ONO-dppz) > 1 (NSO-dpq) > 3 (ONO-dpq). They cleave supercoiled pUC19 DNA to its nicked circular form when treated with 3-mercaptopropionic acid (MPA) by formation of hydroxyl radicals as the cleavage active species under dark reaction conditions. The photoinduced DNA cleavage activity of the complexes was investigated using UV radiation of 365 nm and red light of 633, 647.1, and 676.4 nm (CW He-Ne and Ar-Kr mixed gas ion laser sources) in the absence of MPA. Complexes 1 and 2, having photoactive NSO-donor Schiff base and dpq/dppz ligands, show dual photosensitizing effects involving both the photoactive ligands in the ternary structure with significantly better cleavage properties when compared to those of 3 and 4, having only photoactive dpq/dppz ligands. Involvement of singlet oxygen in the light-induced DNA cleavage reactions is proposed. A significant enhancement of the red-light-induced DNA cleavage activity is observed for the dpq and dppz complexes containing the sulfur ligand when compared to their earlier reported phen (1,10-phenanthroline) analogue. Enhancement of the cleavage activity on photoexposure at the d-d band indicates the occurrence of metal-assisted photosensitization processes involving the LMCT and d-d band in the ternary structure.  相似文献   

19.
The synthesis and characterisation of a new bis([9]aneN3) ligand (L4) containing two [9]aneN3 macrocyclic moieties separated by a 2,6-dimethylenepyridine unit is reported. A potentiometric and 1H NMR study in aqueous solution reveals that ligand protonation occurs on the secondary amine groups and does not involve the pyridine nitrogen. The coordination properties toward Cu(II), Zn(II), Cd(II) and Pb(II) were studied by means of potentiometric and UV spectrophotometric measurements. The ligand can form mono- and binuclear complexes in aqueous solution. In the 1 : 1 complexes, the metal is sandwiched between the two [9]aneN3 moieties and the pyridine N-donor is coordinated to the metal, as actually shown by the crystal structure of the compound [ZnL4](NO3)2.CH3NO2. L4 shows a higher binding ability for Cd(II) with respect to Zn(II), probably due to a better fitting of Cd(II) ion inside the cavity generated by the two facing [9]aneN3 units. The formation of binuclear complexes is accompanied by the assembly of OH-bridged M2(OH)x (x = 1-3) clusters inside the cavity defined by the two facing [9]aneN3 units, and pyridine is not involved in metal coordination. A potentiometric and (1)H NMR study on the coordination of halogenide anions by L4 and its structural analogous L3 in which the two [9]aneN3 units are separated by a shorter quinoxaline linkage, shows that bromide is selectively recognised by L4, while chloride is selectively bound by L3. Such a behaviour is discussed in terms of dimensional matching between the spherical anions and the cavities generated by the two [9]aneN3 units of the receptors.  相似文献   

20.
A series of metal(II) complexes ML and ML2 [where M?=?Cu(II), Co(II), Ni(II), Zn(II), Mn(II), Cd(II), and VO(II); L?=?2-hydroxyphenyl-3-(1H-indol-3-yl)-prop-2-en-1-one (HPIP)] have been prepared and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, NMR, Mass, and ESR spectral studies. Conductivity measurements reveal that the complexes are non-electrolytes, except VO(II) complex. Spectroscopy and other data show square pyramidal geometry for oxovanadium and octahedral geometry for the other complexes. Redox behavior of the copper(II) and vanadyl complexes has been studied with cyclic voltammetry. Antimicrobial activities against several microorganisms indicate that a few complexes exhibit considerable activity. The nuclease activity shows that the complexes cleave DNA. All synthesized compounds can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation efficiency of the ligand is higher than that of urea and KDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号