首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of the mechanism for the interaction of vinyl chloride (VC) with liquid foods is of great significance in food science. In the present work the model system VC-water was studied by using the relatively new technique of reversed-flow gas chromatography. Using suitable mathematical analysis the following physicochemical quantities were determined: (a) diffusion coefficients of VC into water, (b) overall mass transfer coefficients of VC in the water, and in the carrier gas nitrogen, (c) partition coefficients of VC between water and nitrogen, and (d) constants of Henry's law for the adsorption of VC by water. From the variation of the above parameters with temperature, and the stirring rate of the water, useful conclusions concerning the mechanism for the VC-water interaction were extracted. The experimental results for the transfer of VC into the bulk water suggest (i) a mechanism consisted of a fast equilibrium step between the VC in the gas phase and in the interface, followed by a slow adsorption of VC into the bulk of water, which is the rate-determining step, when the water is quiescent, and (ii) a mechanism consisted of a slow diffusion of VC from the gas phase to the interface, which is the rate-determining step, followed by a fast equilibrium step between the VC in the interface and in the water bulk, when the water is stirred.  相似文献   

2.
Summary The interaction of vinylchloride (VC) with liquid foods, such as water, olive oil and honey, was studied using the relatively new technique of Reversed-Flow Gas Chromatography (RFGC). The RFGC method permits the calculation of the VC diffusion coefficient in the liquid phase (water, oil and honey) and the determination of the partition coefficient of VC between the liquid and the carrier gas, as well as the determination of the Henry's constant of VC in the liquid food. From the variation of the above parameters with temperature, thermodynamic parameters (free and excess free energies, enthalpies, entropies and activity coefficients) were calculated for the adsorption of VC by liquid foods. These are discussed in comparison with the same parameters calculated from empirical equations or determined experimentally by other techniques.  相似文献   

3.
The present state of hydrodynamics and mass transfer studies in segmented gas-liquid flow in microchannels has been analyzed. It has been shown that such parameters as gas bubble velocity, gas hold-up, relative gas bubble length, pressure drop, mass transfer coefficients from gas bubbles to liquid slugs and to liquid film, as well as mass transfer coefficient from liquid to channel wall can be satisfactorily predicted. Nevertheless, some correlations were obtained under definite conditions and should be summarized. The purpose of further research is to develop reliable methods for calculation of mass transfer coefficients as functions of channel geometry, phase properties, and phase velocities in mini- and microchannels.  相似文献   

4.
Integral relations that predict interface film transfer coefficients for evaporation and condensation have recently been derived. According to these relations, all coefficients can be calculated for one-component systems, using the thermal resistivity and the enthalpy profile through the interface. The integral relations were tested in this work using nonequilibrium molecular dynamics simulations for argon-like particles and n-octane molecules. The simulations confirm the integral relations within the accuracy of the calculation for both systems. Evidence is presented for the existence of an excess thermal resistivity on the gas side of the surface, and the fact that this property is decisive for interface heat and mass transfer coefficients. The integral relations were used to predict the mass transfer coefficient for n- octane as a function of surface tension. The findings are important for modeling of one-component phase transitions.  相似文献   

5.
由于大多数水合物客体不溶于水,水相与客体相界面首先形成一层气体水合物膜,气体水合物膜生长是水合物生长的主要形式,研究水合物膜生长规律对于理解水合物生长动力学及进一步开发促进和抑制水合物生长的应用技术具有重要意义.本文综述了近年来气体水合物膜生长形态、横向生长和增厚生长的理论和实验研究进展.首先介绍了不同客体-水体系(包括气/液界面、液/液界面和气-液-液体系)形成的水合物膜生长形态随实验条件的变化规律,然后分别从横向生长和增厚生长两方面总结了水合物膜生长的实验和模型方面的研究工作,阐述了常见的膜生长速率和膜厚度的测量方法,分析了水合物膜生长的传热和传质机理.同时展望了未来水合物膜生长研究的发展方向.  相似文献   

6.
A mathematical model is developed to simulate a falling film reactor for sulfonation/sulfation. In the model, the reaction rate is considered to be controlled by the mass transfer in the gas phase or in the liquid phase. The gas phase mass and heat transfers are calculated by empiric equations; in the liquid phase, they are calculated by solving with numerical methods the partial differential equations which describe the system. In these equations, and eddy diffusion is considered, following the Levich's theories

The model results are compared with the experimental results obtained by the authors in a pilot plant, for the dodecylbenzene sulfonation.  相似文献   

7.
Physicochemical parameters for heterogeneous catalytic reactions when the catalytic bed was under a liquid phase have been determined, using a non-linear adsorption isotherm by the reversed-flow version of inverse gas chromatography (RF-GC). The mathematical analysis developed in heterogeneous catalysis, mass transfer across gas-liquid boundaries, and diffusion coefficients of gases in liquids was associated with a non-linear adsorption isotherm to find the relevant equations pertaining to the problem. These equations were then used to calculate the adsorption/desorption rate constant, the rate constant for the first-order catalytic reaction and the equilibrium constant for the non-linear adsorption isotherm. The diffusion coefficients of the reactant in the liquid and gaseous phases and the partition coefficients for the distribution of the reactant between the gaseous and liquid phase were also determined.  相似文献   

8.
A rapid, efficient and low-cost headspace technique useful for the determination of liquid/gas partition coefficients of gases and volatile substances of low and intermediate solubility is described. The equilibration step is carried out at constant pressure using glass syringes, with a ratio of liquid/gas phase volumes of ca. 1:3; after 30 min at the desired temperature, the headspace is recovered by transfer into another syringe and analyzed by gas chromatography. A study of the partition coefficients in water at 37 degrees C of 27 volatile compounds demonstrated that the method is fully applicable for all gases, with exception of those with a partition coefficient higher than 300.  相似文献   

9.
The present work aimed the mass transfer investigation in the removal of organic contaminants from water by the pervaporation process. The terpolymer ethene-propene-diene (EPDM) was used as the selective elastomer. Two classes of model organic solutes were chosen: chlorinated hydrocarbons (trichloroethylene, dichloromethane and trichloromethane) and aromatic ones (toluene, phenol and aniline). Pervaporation tests were carried out using dense and composite membranes with different thickness, solute concentrations and feed flow velocities at room temperature. The liquid boundary layer resistance (i.e., concentration polarization phenomenon) was observed for all solutes. The resistance-in-series model was used to determine liquid and polymer phase resistances. The results obtained indicate that the model would be better written considering the chemical potential gradient as driving force, in order to take into account affinity between water and the organic solutes, as well as their interactions with the polymer selective layer. The rational activity coefficients of the solutes in the polymer phase were determined by inverse gas chromatography (IGC) and related to the mass transfer coefficient in the polymer phase.  相似文献   

10.
Uptake kinetics of gas phase nitrous acid (HONO) by a pH-controlled aqueous solution was investigated by using a wetted wall flow tube. The gas phase concentration of HONO after exposure to the aqueous solution was measured selectively by the chemical ionization mass spectrometer in a high sensitive manner. The uptake rate of the gaseous HONO was found to depend on the pH of the solution. For the uptake by neutral and alkaline solutions, the gas phase concentration was observed to decay exponentially, suggesting that the uptake was fully limited by the gas phase diffusion. On the other hand, the uptake by the acidic solution was found to be determined by both the gas phase diffusion and the liquid phase processes such as physical absorption and reversible acid dissociation reaction. The decay was analyzed by the rate equations using the time dependent uptake coefficient involving the saturation of the liquid surface. While the uptake processes by the solution at pH = 2-3 were well described by those calculated using the physical and chemical parameters reported for the bulk, the uptake rates by the solution at 4 < pH < 7 deviate from the calculated ones. The present result can suggest that the pH at the liquid surface is lower than that in the bulk liquid, which is responsible for the additional resistance of mass transfer from the gas to the liquid phase.  相似文献   

11.
The behavior of proton transfer facilitated by a novel thiazole derivative, N-methyl-4-(4-phenoxyphenyl)thiazol-2-amine (MPPT), across the water/1,2-dichloroethane (1,2-DCE) interface was investigated electrochemically. The ionic partition diagram for MPPT was obtained from interpretation of the cyclic voltammograms. The apparent partition coefficient of MPPT was evaluated by the shaking-flask method under experimental conditions, while that for the protonated form of MPPT was calculated from its transfer potential obtained from the ionic partition diagram. It was suggested that the mechanism for transfer of MPPT across the water/1,2-DCE) interface depends on the pH of the aqueous phase. The parameters of the facilitated proton transfer across the water/1,2-DCE interface were evaluated as a quantitative measure of its lipophilicity.  相似文献   

12.
Quaternary ammonium salts, which are precursors of ionic liquids, have been prepared from N,N-dimethylethanolamine as a substrate. The paper includes specific basic characterization of synthesized compounds via the following procedures: nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra, water content, mass spectroscopy (MS) spectra, temperatures of decompositions, basic thermodynamic properties of pure ionic liquids (the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition), and the difference in the solute heat capacity between the liquid and solid at the melting temperature determined by differential scanning calorimetry (DSC). The (solid + liquid) phase equilibria of binary mixtures containing (quaternary ammonium salt + water, or + 1-octanol) has been measured by a dynamic method over wide range of temperatures, from 230 K to 560 K. These data were correlated by means of the UNIQUAC ASM and modified nonrandom two-liquid NRTL1 equations utilizing parameters derived from the (solid + liquid) equilibrium. The partition coefficient of ionic liquid in the 1-octanol/water binary system has been calculated from the solubility results. Experimental partition coefficients (log P) were negative at three temperatures.  相似文献   

13.
Partition coefficient and gas solubility data have been assembled from the published chemical and engineering literature for solutes dissolved in anhydrous 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, and 4-cyano-1-butylpyrridinium bis(trifluoromethylsulfonyl)imide. More than 60 experimental data points were gathered for each IL solvent. The compiled experimental data were used to derive Abraham model correlations for describing the solute transfer properties into the three anhydrous IL solvents from both the gas phase and water. The derived mathematical correlations described the observed solute transfer properties, expressed as the logarithm of the water-to-IL partition coefficient and logarithm of the gas-to-IL solvent partition coefficient, to within standard deviations of 0.125 log units (or less). Abraham model ion-specific equation coefficients are also calculated for the 1-butyl-2,3-dimethylimidazolium and 4-cyano-1-butylpyridinium cations.  相似文献   

14.
A model was developed to predict the drying behavior of multilayer polymer films on inert substrates. The model considers simultaneous heat and mass transfer controlled by complex thermodynamic and transport properties of polymer solutions. Key components of the model are the incorporation of the free volume theory to predict diffusivities in each polymer layer, the use of heat and mass transfer coefficients to describe complex transport phenomena in the gas phase, the incorporation of exact equilibrium boundary conditions at polymer–polymer interface, and the use of the Flory–Huggins theory to describe both liquid–liquid and vapor–liquid equilibria. The model can be applied to guide processing, product formulation, scale‐up, and oven design. As an example, the model is applied to simulate the drying of a two‐layer coating of poly vinyl acetate (in toluene) over polystyrene (also in toluene) on a polyester substrate. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1665–1675, 1999  相似文献   

15.
16.
Summary A simple chromatographic method is developed to determine the rate constant for expulsion of an air pollutant from water or its diffusion parameter in the liquid, the rate constant for chemical reaction of the pollutant with water, its mass transfer coefficient in the liquid, and the partition coefficient between liquid water and air. From these physicochemical parameters, the absorption rate by sea water and, therefore, the depletion rate of a polluting substance from the air can be calculated, together with the equilibrium state of this absorption. The method has been applied to nitrogen dioxide being absorbed by triple-distilled water and by sea water, at various temperatures. From the temperature variation of the reaction rate constant and of the partition coefficient, the activation energy for the reaction and the differential heat of solution were determined.  相似文献   

17.
Vejrosta, J., Novák, J. and Jönsson, J.Å., 1982. A method for measuring infinite-dilution partition coefficients of volatile compounds between the gas and liquid phases of aqueous systems. Fluid Phase Equilibria, 8: 25–35.A method has been developed for measuring the partition coefficients of volatile compounds between the gas and liquid phases of aqueous systems, based on the direct analysis of both phases. A gas mixture containing a known proportion of a volatile compound is drawn through the liquid (water) until equilibrium is established. A defined volume of the liquid phase is then withdrawn through a porous-polymer trap while maintaining the system at equilibrium. The residual water in the trap is then expelled by a stream of nitrogen gas, and the deposit remaining is thermally desorbed and analyzed by gas chromatography. This approach, together with an experimental technique for producing gas mixtures containing an accurately known concentration of hydrocarbon at low values, makes it possible to determine accurately the partition coefficients of low-solubility compounds, such as for hydrocarbons in aqueous systems, at very low solute concentrations in the system. The method has been verified by measuring the partition coefficient of hexane between the gas and liquid phases of an aqueous system at various concentrations and temperatures.  相似文献   

18.
The gas permeabilities of thin liquid films stabilized by poly(N-isopropylacrylamide) (PNIPAM) and PNIPAM-SDS (sodium dodecyl sulfate) mixtures are studied using the "diminishing bubble" method. The method consists of forming a microbubble on the surface of the polymer solution and measuring the shrinking rates of the bubble and the bubble film as the gas diffuses from the interior to the exterior of the bubble. PNIPAM-stabilized films exhibit variable thicknesses and homogeneities. Interestingly, despite these variable features, the gas permeability of the film is determined principally by the structure of the adsorbed polymer layer that provides an efficient gas barrier with a value of gas permeability coefficient that is comparable to that of an SDS Newton black film. In the presence of SDS, both the film homogeneity and the gas permeability coefficient increase. These changes are related to interactions of PNIPAM with SDS in the solution and at the interface, where coadsorption of the two species forms mixed layers that are stable but that are more porous to gas transfer. The mixed PNIPAM-SDS layers, studied previously for a single water-air interface by neutron reflectivity, are further characterized here in a vertical free-draining film using X-ray reflectivity.  相似文献   

19.
Hydroxyl radical at the air-water interface   总被引:1,自引:0,他引:1  
Interaction of the hydroxyl radical with the liquid water surface was studied using classical molecular dynamics computer simulations. From a series of scattering trajectories, the thermal and mass accommodation coefficients of OH on liquid water at 300 K were determined to be 0.95 and 0.83, respectively. The calculated free energy profile for transfer of OH across the air-water interface at 300 K exhibits a minimum in the interfacial region, with the free energy of adsorbtion (DeltaGa) being about 1 kcal/mol more negative than the hydration free energy (DeltaGs). The propensity of the hydroxyl radical for the air-water interface manifests itself in partitioning of OH radicals between the bulk water and the surface. The enhancement of the surface concentration of OH relative to its concentration in the aqueous phase suggests that important OH chemistry may be occurring in the interfacial layer of water droplets, aqueous aerosol particles, and thin water films adsorbed on solid surfaces. This has profound consequences for modeling heterogeneous atmospheric chemical processes.  相似文献   

20.
In this study, the adsorption equilibrium and diffusivity parameters of p-nitrophenol were estimated for water containing different concentrations of secondary amides. Commercial powdered activated carbon was used as an adsorbent. The external mass transfer coefficient (kf), the surface diffusion coefficient (Ds) and the standard free Gibbs energy were calculated for p-nitrophenol in the presence of different secondary amide concentrations. The analysis established that there are correlations between structural parameters of amides, on the one hand, and diffusion and thermodynamic parameters for p-nitrophenol adsorption process, on the other. It was noticed that voluminous hydrophobic amides decreased the adsorption capacity of p-nitrophenol on activated carbon. On the basis of the results obtained for external mass transfer coefficients, it is assumed that amides cause the reduction of adsorption capacity of p-nitrophenol onto activated carbon by concentrating at the solid/liquid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号