首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Second-order necessary and sufficient conditions for local optimality in constrained optimization problems are discussed. For global optimality, a criterion recently developed by Hiriart-Urruty and Lemarechal is thoroughly examined in the case of concave quadratic problems and reformulated into copositivity conditions.  相似文献   

2.
In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. The work of Z. Y. Wu was carried out while the author was at the Department of Applied Mathematics, University of New South Wales, Sydney, Australia.  相似文献   

3.
4.
This paper describes a new technique for generating convex, strictly concave and indefinite (bilinear or not) quadratic programming problems. These problems have a number of properties that make them useful for test purposes. For example, strictly concave quadratic problems with their global maximum in the interior of the feasible domain and with an exponential number of local minima with distinct function values and indefinite and jointly constrained bilinear problems with nonextreme global minima, can be generated.Unlike most existing methods our construction technique does not require the solution of any subproblems or systems of equations. In addition, the authors know of no other technique for generating jointly constrained bilinear programming problems.Support of this work has been provided by the Instituto Nacional de Investigação Científica de Portugal (INIC) under contract 89/EXA/5 and by the Natural Sciences and Engineering Research Council of Canada operating grant 5671.Much of this paper was completed while this author was on a research sabbatical at the Universidade de Coimbra, Portugal.  相似文献   

5.
《Optimization》2012,61(6):627-639
Abstract: In this article, we consider the concave quadratic programming problem which is known to be NP hard. Based on the improved global optimality conditions by [Dür, M., Horst, R. and Locatelli, M., 1998, Necessary and sufficient global optimality conditions for convex maximization revisited, Journal of Mathematical Analysis and Applications, 217, 637–649] and [Hiriart-Urruty, J.B. and Ledyav, J.S., 1996, A note in the characterization of the global maxima of a convex function over a convex set, Journal of Convex Analysis, 3, 55–61], we develop a new approach for solving concave quadratic programming problems. The main idea of the algorithms is to generate a sequence of local minimizers either ending at a global optimal solution or at an approximate global optimal solution within a finite number of iterations. At each iteration of the algorithms we solve a number of linear programming problems with the same constraints of the original problem. We also present the convergence properties of the proposed algorithms under some conditions. The efficiency of the algorithms has been demonstrated with some numerical examples.  相似文献   

6.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

7.
An algorithm for solving a linear multiplicative programming problem (referred to as LMP) is proposed. LMP minimizes the product of two linear functions subject to general linear constraints. The product of two linear functions is a typical non-convex function, so that it can have multiple local minima. It is shown, however, that LMP can be solved efficiently by the combination of the parametric simplex method and any standard convex minimization procedure. The computational results indicate that the amount of computation is not much different from that of solving linear programs of the same size. In addition, the method proposed for LMP can be extended to a convex multiplicative programming problem (CMP), which minimizes the product of two convex functions under convex constraints.  相似文献   

8.
Second-order sufficient condition and quadratic growth condition play important roles both in sensitivity and stability analysis and in numerical analysis for optimization problems. In this article, we concentrate on the global quadratic growth condition and study its relations with global second-order sufficient conditions for min-max optimization problems with quadratic functions. In general, the global second-order sufficient condition implies the global quadratic growth condition. In the case of two quadratic functions involved, we have the equivalence of the two conditions.  相似文献   

9.
In this paper, necessary optimality conditions in terms of upper and/or lower subdifferentials of both cost and constraint functions are derived for minimax optimization problems with inequality, equality and geometric constraints in the setting of non-differentiatiable and non-Lipschitz functions in Asplund spaces. Necessary optimality conditions in the fuzzy form are also presented. An application of the fuzzy necessary optimality condition is shown by considering minimax fractional programming problem.  相似文献   

10.
Received June 4, 1996 / Revised version received November 19, 1997 Published online November 24, 1998  相似文献   

11.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

12.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

13.
An abnormal minimization problem with equality constraints and a finite-dimensional image is examined. Second-order necessary conditions for this problem are given that strengthen previously known results.  相似文献   

14.
In this paper,we consider a class of quadratic maximization problems.For a subclass of the problems,we show that the SDP relaxation approach yields an approximation solution with the ratio is dependent on the data of the problem with α being a uniform lower bound.In light of this new bound,we show that the actual worst-case performance ratio of the SDP relaxation approach (with the triangle inequalities added) is at least α δd if every weight is strictly positive,where δd > 0 is a constant depending on the problem dimension and data.  相似文献   

15.
Characterizations of global optimality are given for general difference convex (DC) optimization problems involving convex inequality constraints. These results are obtained in terms of -subdifferentials of the objective and constraint functions and do not require any regularity condition. An extension of Farkas' lemma is obtained for inequality systems involving convex functions and is used to establish necessary and sufficient optimality conditions. As applications, optimality conditions are also given for weakly convex programming problems, convex maximization problems and for fractional programming problems.This paper was presented at the Optimization Miniconference held at the University of Ballarat, Victoria, Australia, on July 14, 1994.  相似文献   

16.
Generally speaking, one cannot expect that there exists a Lagrangian saddle point even for a linear fractional program. Using the functionsGF(x,r 0,r) andGK(x,u) somewhat like the Lagrangian functions, we present saddle-point type optimality criteria for generalized fractional programming under carefully selected assumptions. In addition, we point out conditions that ensure that a local optimal solution of the program mentioned is global.The author wishes to thank an anonymous referee for his detailed comments toward a clear presentation of this paper.  相似文献   

17.
For the general quadratic programming problem (including an equivalent form of the linear complementarity problem) a new solution method of branch and bound type is proposed. The branching procedure uses a well-known simplicial subdivision and the bound estimation is performed by solving certain linear programs.  相似文献   

18.
The Kuhn-Tucker Sufficiency Theorem states that a feasible point that satisfies the Kuhn-Tucker conditions is a global minimizer for a convex programming problem for which a local minimizer is global. In this paper, we present new Kuhn-Tucker sufficiency conditions for possibly multi-extremal nonconvex mathematical programming problems which may have many local minimizers that are not global. We derive the sufficiency conditions by first constructing weighted sum of square underestimators of the objective function and then by characterizing the global optimality of the underestimators. As a consequence, we derive easily verifiable Kuhn-Tucker sufficient conditions for general quadratic programming problems with equality and inequality constraints. Numerical examples are given to illustrate the significance of our criteria for multi-extremal problems.  相似文献   

19.
In this paper, we present sufficient global optimality conditions for weakly convex minimization problems using abstract convex analysis theory. By introducing (L,X)-subdifferentials of weakly convex functions using a class of quadratic functions, we first obtain some sufficient conditions for global optimization problems with weakly convex objective functions and weakly convex inequality and equality constraints. Some sufficient optimality conditions for problems with additional box constraints and bivalent constraints are then derived.   相似文献   

20.
We examine new second-order necessary conditions and sufficient conditions which characterize nondominated solutions of a generalized constrained multiobjective programming problem. The vector-valued criterion function as well as constraint functions are supposed to be from the class C 1,1. Second-order optimality conditions for local Pareto solutions are derived as a special case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号