首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel sol-gel/laser-induced technique (SGLIT) has been developed to form nanocrystalline titanium dioxide (TiO2) based thin films with an improved antibacterial performance. TiO2 precursor films loaded with W+6 and Ag+2 ions (W–TiO2, Ag–TiO2) were prepared separately by sol-gel method and spin-coated on microscopic glass slides. As-dried films were subjected to KrF excimer laser pulses at optimized parameters to generate mesoporous anatase and rutile phases at room temperature. The anatase phase was obtained after irradiation with 10 laser pulses only at 75–85 mJ/cm2 fluence in W–TiO2 films. However, higher number of laser pulses and higher W+6 content favored the formation of rutile. Whereas Ag–TiO2 films exhibited anatase up to 200 laser pulses at the same fluence. The films were characterized by using XRD, FEG-SEM, TEM and UV-Vis spectrophotometer to investigate the crystallographic structure, phase transformation, surface morphology, film thickness and the optical properties. A crystallite size of approximately 20 nm was achieved from the anatase prepared by SGLIT. The films exhibited an enhanced antibacterial function against E-Coli cells under the UV excitation.  相似文献   

2.
张连珠  孟秀兰  张素  高书侠  赵国明 《物理学报》2013,62(7):75201-075201
采用两维PIC/MCC模型模拟了氮气微空心阴极放电以及轰击离子 (N2+,N+) 的钛阴极溅射. 主要计算了氮气微空心阴极放电离子 (N2+,N+) 及溅射原子Ti的行为分布, 并研究了溅射Ti 原子的热化过程. 结果表明: 在模拟条件下, 空心阴极效应是负辉区叠加的电子震荡; 在对应条件下, 微空心较传统空心放电两种离子 (N2+,N+) 密度均大两个量级, 两种离子的平均能量的分布及大小几乎相同; 在放电空间N+的密度约为N2+的1/6, 最大能量约大2倍; 在不同参数 (P, T, V)下, 轰击阴极内表面的氮离子(N2+,N+)的密度近似均匀, 其平均能量几乎相等; 从阴极溅射出的Ti原子的初始平均能量约6.8 eV, 离开阴极约0.15 mm处几乎完全被热化. 模拟结果为N2微空心阴极放电等离子体特性的认识提供了参考依据. 关键词: 微空心阴极放电 PIC/MC模拟 2等离子体')" href="#">N2等离子体  相似文献   

3.
The effect of doping with Li+, Zn2+, Ni2+, and Ga3+ ions on the magnetic susceptibility of the low-dimensional antiferromagnet CuO (T N=230 K) has been studied within a broad temperature range of 77–600 K. The solubility of impurity ions in the CuO lattice is low, ⩽3%. Impurity ions, similar to intrinsic defects, distort antiferromagnetic coupling and can shift the long-and short-range magnetic-order regions toward lower T. Fiz. Tverd. Tela (St. Petersburg) 40, 1876–1880 (October 1998)  相似文献   

4.
The intensities of hydrogen Hβ and deuterium Dβ spectral lines of the Balmer series were measured as a function of collision energy when H+, H2 +, H3 +, D+, D2 +, and D3 + ions impinged on Al, Ti, Cu, Mo, W, and Pb targets. The collision energies were kept in the 100–1000 eV range. The target surface was contaminated with hydrocarbons from the vacuum pumping system and possibly also by oxygen molecules due to limited vacuum conditions. At projectile velocities above 200 km/s the luminescence of backscattered deuterium atoms is about 30–50% weaker than that of hydrogen atoms.  相似文献   

5.
A spectroscopic study of ambient air plasma, initially at room temperature and pressures ranging from 32 to 101 kPa, produced by high-power transverse excitation atmospheric (TEA) CO2 laser (λ=9.621 and 10.591 μm; τ FWHM≈64 ns; power densities ranging from 0.29 to 6.31 GW cm−2) has been carried out in an attempt to clarify the processes involved in laser-induced breakdown (LIB) air plasma. The strong emission observed in the plasma region is mainly due to electronic relaxation of excited N, O and ionic fragments N+. The medium-weak emission is due to excited species O+, N2+, O2+, C, C+, C2+, H, Ar and molecular band systems of N 2+(_{2}^{+}( B 2\varSigma u+^{2}\varSigma _{\mathrm{u}}^{+} –X 2\varSigma g+)^{2}\varSigma _{\mathrm{g}}^{+}) , N2(C3 Π u–B3 Π g), N 2+(_{2}^{+}( D2 Π g–A2 Π u) and OH(A2 Σ +–X2 Π). Excitation temperatures of 23400±700 K and 26600±1400 K were estimated by means of N+ and O+ ionic lines, respectively. Electron number densities of the order of (0.5–2.4)×1017 cm−3 and (0.6–7.5)×1017 cm−3 were deduced from the Stark broadening of several ionic N+ and O+ lines, respectively. Estimates of vibrational and rotational temperatures of N 2+_{2}^{+} electronically excited species are reported. The characteristics of the spectral emission intensities from different species have been investigated as functions of the air pressure and laser irradiance. Optical breakdown threshold intensities in air at 10.591 μm have been measured.  相似文献   

6.
Comparative studies of the emission of quasi-thermal atomic and cluster ions from V, Nb, Ta, Au, and In targets bombarded by cluster ions Au m (m = 1–9), as well as from Si and Bi targets bombarded by cluster ions Au m (m = 1–9) and Bi m (m = 1–5), with energy E 0 ranging from 6 to 21 keV are carried out. In the case of bombardment by heavy cluster ions, the fraction of the quasi-thermal component in the energy spectra of sputtered atomic ions reaches 50 (for V, In, and Au), 70 (Nb), or more than 90% (Ta). In addition, quasi-thermal ions play a considerable part in the emission of small cluster ions Au2+, In2+, In3+, and Bi n +(n = 2–7). The results of the generalizing investigation favor the presence of thermal spike conditions at cluster bombardment and their appreciable contribution to the emission of atomic and small cluster ions.  相似文献   

7.
(1−xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique, and their structure, electrical properties, and temperature characteristics have been studied systematically. The ceramics can be well-sintered at 1050–1150 °C. The increase in K+ concentration decreases the grain-growth rate and promotes the formation of grains with a cubic shape, while the addition of Li+ decreases greatly the sintering temperature and assists in the densification of BNT-based ceramics. The results of XRD diffraction show that K+ and Li+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. As x increases from 0.05 to 0.50, the ceramics transform gradually from rhombohedral phase to tetragonal phase and consequently a morphotropic phase boundary (MPB) is formed at 0.15≤x≤0.25. The concentration y of Li+ has no obvious influence on the crystal structure of the ceramics. Compared with pure Bi0.5Na0.5TiO3, the partial substitution of K+ and Li+ for Na+ lowers greatly the coercive field E c and increases the remanent polarization P r of the ceramics. Because of the MPB, lower E c and large P r, the piezoelectricity of the ceramics is improved significantly. For the ceramics with the compositions near the MPB (x=0.15–0.25 and y=0.05–0.10), the piezoelectric properties become optimum: piezoelectric coefficient d 33=147–231 pC/N and planar electromechanical coupling factor k P=20.2–41.0%. In addition, the ceramics exhibit relaxor characteristic, which probably results from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shows a strong dependence on the concentration x of K+ and reaches the lowest values at the MPB. The temperature dependences of the ferroelectric and dielectric properties at high temperatures may imply that the ceramics may contain both the polar and non-polar regions at temperatures above T d.  相似文献   

8.
Experimental data are presented from studies of the structure and bond type of carbon atoms in amorphous carbon-nickel films deposited from pulsed vacuum-arc discharge plasma sources. X-ray photoelectron spectroscopy was used. The characteristics of the plasmon loss spectra depend significantly on the deposition parameters. Carbon exists in a mixed sp2+sp3 hybridized state in the carbon–nickel films. The ratio of sp3/sp2 carbon bonds increases when the nickel content is reduced (from 5.5 to 1.0 atomic %) and the deposition angle is increased. The structure closest to that of diamond was with a substrate bias voltage of –80 to –100 V and a deposition angle of 90°.  相似文献   

9.
氮气辉光放电阴极鞘层重粒子输运过程研究   总被引:15,自引:0,他引:15       下载免费PDF全文
采用蒙特卡罗模拟对氮气辉光放电等离子体阴极鞘层内离子(N2+,N+)和快中性分子(N2f)的输运过程进行了研究,计算了阴极鞘层中离子(N2+,N+)和快中性分子的能量及角分布的空间变化,较好地解释了实验结果.得到了氮气辉光放电等离子体阴极附近主要存在着能量较低的荷能分子、密度较低的高能原子离子及密度和能量居中的分子离子.诸粒子状态随放电条件而变化.模拟结 关键词:  相似文献   

10.
A novel technique based on the excimer laser induced crystallization and modification of TiO2 thin films is being reported. W+6 ions loaded TiO2 (WTO) precursor films were prepared by a modified sol–gel method and spin-coated onto microscopic glass slides. Pulsed KrF (248 nm, 13 ns) excimer laser was used to irradiate the WTO amorphous films at various laser parameters. Mesoporous and nanostructured films consisting of anatase and rutile were obtained after laser irradiation at room temperature. The effect of varying W+6 ions concentrations on structural and optical properties the WTO films was analyzed by X-ray diffraction, field-emission scanning electron microscope, UV-Vis spectrophotometer and transmission electron microscope before and after laser treatment. Films irradiated for 10 pulses at 65–75 mJ/cm2 laser fluence, exhibited anatase whereas higher parameters promoted the formation of rutile. XPS results revealed WO3 along with minor proportion of WO2 compounds after laser irradiation. Photo-absorbance of the WTO films was increased with increase in W+6 ions concentration in the film. TEM results exhibited a crystallite size of 15 nm which was confirmed from SEM results as well.  相似文献   

11.
The temperature dependence of the precession of the angular correlation of decay gamma rays from swift150Sm (2 1 + ) ions traversing a gadolinium foil has been found to be proportional to the foil magnetization, supporting the assertion that the transient hyperfine magnetic field acting on these ions is proportional to the magnetization of the hosts (iron or gadolinium). Similar experiments on194Pt (2 1 + ) ions traversing iron and gadolinium foils are consistent with both the magnetic moment obtained from Rutgers experiments on iron and with a hyperfine field at Pt ions larger for gadolinium than for iron foils, in agreement with the Chalk River parametrization for heavy nuclei traversing gadolinium foils. Finally, the magnetic moments of the 2 1 + states in144–150Nd,145,150Sm and152Gd have been measured. These data support the evidence of shell closure atZ=64 forN≤88 andZ=50 forN>90.  相似文献   

12.
A new effect of the reduction in the rate of phonon scattering by the spatially correlated system of iron ions in HgSe:Fe crystals is detected experimentally and calculated theoretically. The thermoelectric power is measured using HgSe:Fe samples with different iron content in the temperature range 7.5–60 K. It is found that the dependence of the thermoelectric power on iron content exhibits remarkable features at T<10 K: the quantity |α(N Fe )| increases as the iron concentration increases to N Fe =5×1018 cm−3, reaches a maximum at N Fe ≈(1–2)×1019 cm−3, but then monotonically decreases with further increases in N Fe . It is shown that the obseved increase in the thermoelectric power is due to a reduction in the rate of phonon scattering by the spatially correlated system of Fe3+ ions. This new effect is analyzed theoretically, and the theoretical results are compared with the experimental data. Zh. éksp. Teor. Fiz. 114, 191–207 (July 1998)  相似文献   

13.
The effect of gas flow in low pressure inductively coupled Ar/N2 plasmas operating at the rf frequency of 13.56 MHz and the total gas pressure of 20 mTorr is studied at the gas flows of 5–700 sccm by coupling the plasma simulation with the calculation of flow dynamics. The gas temperature is 300 K and input power is 300 W. The Ar fractions are varied from 0% to 95%. The species taken into account include electrons, Ar atoms and their excited levels, N2 molecules and their seven different excited levels, N atoms, and Ar+, N+, N2 +, N4 + ions. 51 chemical reactions are considered. It is found that the electron densities increase and electron temperatures decrease with a rise in gas flow rate for the different Ar fractions. The densities of all the plasma species for the different Ar fractions and gas flow rates are obtained. The collisional power losses in plasma discharges are presented and the effect of gas flow is investigated.  相似文献   

14.
Time- and spatially-resolved optical emission spectroscopy was performed to characterize the plasma produced in a hybrid magnetron-sputtering-laser deposition system, which is used for TiC or SiC thin films preparation. A graphite target was ablated by a KrF excimer laser (λ=248 nm,τ=20 ns) and either Ti or Si targets were used for DC magnetron sputtering in argon ambient. Spectra were measured in the range 250–850 nm. The evolution of the spectra with varying magnetron powers (0–100 W) and argon pressures (0.3–10 Pa) was studied. Spectra of the plasmas produced by a) the magnetron alone, b) the ablation laser alone, and c) the magnetron and the ablation laser together, were recorded. Spectra (a) were dominated by Ar atoms and Ar+ ions. Emission lines of Ti and Si were detected, when Ti target and Si target was used, respectively. Spectra (b) revealed emission of C, C+, C2, Ar, Ar+. Spectra (c) showed presence of all previously mentioned species and further of Ti+ ions emission was detected. The research was supported by Grant Agency of the Czech Republic No. 202/06/02161, GA ASCR project number A1010110/01 and Institutional Research Plan AV CR No. AV0Z 10100522.  相似文献   

15.
A novel route for preparing PbWO4–TiO2 nanofilms on a glass substrate is firstly proposed. The collodion is used as a dispersant and film-forming agent. The nanofilms are characterized through SEM, XRD, TG/DTA, PL and IR, respectively. The results of XRD indicate PbWO4 particles with tetragonal scheelite structure and TiO2 particles with Anatase phase, and SEM shows they are well dispersed in the substrate. Compared with nanoparticles, when TiO2 nanoparticles are added in 5% ratio, the PL intensities at 395 nm of PbWO4 nanofilms are enhanced obviously. IR spectrum reveals a large absorption band between 750 and 870 cm−1, which is the W–O stretching vibration in WO4 tetrahedron.  相似文献   

16.
The effect of plasticizer and TiO2 nanoparticles on the conductivity, chemical interaction and surface morphology of polymer electrolyte of MG49–EC–LiClO4–TiO2 has been investigated. The electrolyte films were successfully prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by sol-gel process and was added into the MG49–EC–LiClO4 electrolyte system. Alternating current electrochemical impedance spectroscopy was employed to investigate the ionic conductivity of the electrolyte films at 25 °C, and the analysis showed that the addition of TiO2 filler and ethylene carbonate (EC) plasticizer has increased the ionic conductivity of the electrolyte up to its optimum level. The highest conductivity of 1.1 × 10−3 Scm−1 was obtained at 30 wt.% of EC. Fourier transform infrared spectroscopy measurement was employed to study the interactions between lithium ions and oxygen atoms that occurred at carbonyl (C=O) and ether (C-O-C) groups. The scanning electron microscopy micrograph shows that the electrolyte with 30 wt.% EC posses the smoothest surface for which the highest conductivity was obtained.  相似文献   

17.
2 , H2O, N2O, and NH3 concentrations in various flowfields using absorption spectroscopy and extractive sampling techniques. An external-cavity diode laser with a tuning range of 1.953–2.057 μm was used to record absorption lineshapes from measured transitions in the CO22 03, ν1+2ν2 03, and 2ν13 bands, H2O ν23and ν12 bands, N2O 2ν1+4ν2 0, ν2 1+2ν3, 3ν1+2ν2 0, and 4ν1 bands, and NH3ν14 and ν34 bands. Measured CO2, H2O, and N2O survey spectra were compared to calculations to verify the HITRAN96 database and used to determine optimum transitions for species detection. Individual lineshape measurements were used to determine fundamental spectroscopic parameters including the line strength, line-center frequency, and self-broadening coefficient of the probed transition. The results represent the first measurements of CO2, H2O, N2O, and NH3 absorption near 2.0 μm using room-temperature near-IR diode lasers. Received: 12 March 1998/Revised version: 7 May 1998  相似文献   

18.
The optical absorption behavior of Tl+ doped Rb(Br1–x I x ) mixed crystals (with x = 0.00, 0.05, and 0.10) grown under vacuum by slow cooling from the melt has been studied. Absorption spectra of the mixed crystals recorded at room temperature showed that the characteristic A-absorption band of Tl+ ions in the Rb(Br1–x I x ) system (0.1 mol. %) with x = 0.00 (i.e., RbBr:Tl+) broadened with the iodine content towards the low energy side. Changes in the absorption spectra of the mixed crystals are due to creation of some complex centers involving Tl+, Br, and I- ions with energy levels inside the band gap while forming the mixed crystal. The absorption spectra of gamma-irradiated mixed crystals showed the F-band, which shifted towards the low energy side due to the existence of iodine ions in the mixed crystals.  相似文献   

19.
Lead-free piezoelectric ceramics Bi0.5(Na1-x-yKxAgy)0.5TiO3 [BNKAT(x/y)] have been synthesized by the mixed oxide method. The effects of the amount of K+ and Ag+ on the electrical properties were examined. X-ray diffraction patterns indicate that K+ and Ag+ ions partially substitute for the Na+ ions in Bi0.5Na0.5TiO3 and form a solid solution during sintering. At room temperature, the ceramics exhibit good performances with piezoelectric constant d33=189 pC/N, electromechanical coupling factor kp=35.0%, remanent polarization Pr=39.5 μC/cm2, and coercive field Ec=3.3 kV/mm, respectively. The curves of the dielectric constant εr and loss tangent tan δ versus temperature show that the transition temperature from ferroelectric to anti-ferroelectric phase decreases with increasing the K+ content for the compositions researched. The dependencies of kp and polarization versus electric (P–E) hysteresis loops on temperature reveal that the depolarization temperature Td of BNKAT(0.15/0.015) ceramics, which have good piezoelectric properties (d33=134 pC/N, kp=32.5%) and strong ferroelectricity (Pr=39.5 μC/cm2, Ec=4.1 kV/mm) at room temperature, is above 160 °C. PACS 77.22.-d; 77.65.Bn; 77.80.Bh; 77.80.Dj; 77.84.Dy  相似文献   

20.
The aerosol deposition of detonation nanodiamonds (DNDs) on a silicon substrate is comprehensively studied, and the possibility of subsequent growth of nanocrystalline diamond films and isolated particles on substrates coated with DNDs is demonstrated. It is shown that a change in the deposition time and the weight concentration of DNDs in a suspension in the range 0.001–1% results in a change in the shape of DND agglomerates and their number per unit substrate surface area N s from 108 to 1011 cm−2. Submicron isolated diamond particles are grown on a substrate coated with DND agglomerates at N s ≈ 108 cm−2 using microwave plasma-enhanced chemical vapor deposition. At N s ≈ 1010 cm−2, thin (∼100 nm) nanodiamond films with a root-mean-square surface roughness less than 15 nm are grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号