首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of defects in carbon nanotubes under irradiation with argon ions is investigated. The π plasmons generated in single-walled and multiwalled carbon nanotubes are examined using electron energy-loss spectroscopy. In the course of experiments, the supramolecular structure of nanotubes is stepwise modified by an argon ion beam (the maximum irradiation dose is 360 μC/cm2). The content of argon ions implanted into a nanotube structure is controlled using Auger electron spectroscopy. The effect of ion irradiation on the π-plasmon energy Eπ and on the half-width at half-maximum δE of the π-plasmon spectrum is determined experimentally. An expression relating the above quantities and the concentration of implanted argon is derived. It is shown that the formation of defects under ion irradiation is a discontinuous process occurring in a stepwise manner. A qualitative phenomenological interpretation is proposed for the experimentally revealed decrease in the π-plasmon energy Eπ and for its attendant broadening of the π-plasmon spectrum. The assumption is made that the microscopic mechanism of the observed phenomena is associated with the narrowing of the energy π subbands in the electric field of charged defects generated by ions.  相似文献   

2.
The characteristic electron-energy-loss (EEL) spectra of the pure surface of metallic yttrium and of this surface in the initial stages of oxidation are recorded. The energy of the primary electron beam E p is 200–1000 eV. The spectra exhibit high-and low-frequency peaks. During oxidation, the positions of the basic peaks in the EEL spectra are significantly shifted. The peaks corresponding to the bulk energy loss shift toward higher energies upon oxidation. The peak corresponding to the low-frequency surface oscillations also shifts, but toward lower energies, and its intensity monotonically decreases with increasing oxygen dose. The differences between the spectra recorded at different E p are explained as resulting from an increase in the electron escape depth with E p .  相似文献   

3.
A parameter representing the intensity ratio of the two features in the characteristic electron energy loss spectrum that are most sensitive to electron irradiation is proposed for use in characterizing the extent of electron-stimulated modification of fullerite. By normalizing this parameter, we succeeded in obtaining a universal scale for the extent of modification that can be unambiguously related to the π-electron density. The dose dependence of this parameter is shown to be described by one exponential, thus permitting one to conclude that both the polymerization and amorphization of the fullerite are dominated by one mechanism, namely, the formation of intermolecular chemical bonds, which is stimulated by valence-electron excitation. The rate of the electron-stimulated modification, or the dose susceptibility of the material, is defined through the derivative of this parameter. The dependence of this rate on the incident electron energy is obtained. It is shown that structural changes are mainly due to a swarm of numerous secondary and decelerated electrons rather than to the primary electron.  相似文献   

4.
The polarized reflectance spectra of single crystals of the low-dimensional organic conductor (EDT-TTF)4[Hg3I8] undergoing a metal-insulator phase transition at a temperature T < 35 K have been presented. The spectral region of the study is 700–6000 cm?1 (0.087–0.74 eV), and the temperature range is 300–9 K. It has been shown that the reflectance spectra are determined by a system of quasi-free electrons of the upper half-occupied molecular π-orbitals, which form a half-filled metallic band in the crystals. A high anisotropy of the spectra and their temperature dependences have been found. For two polarizations, the quantitative analysis of the spectra at 100 and 25 K has been performed in the framework of the phenomenological Drude model, the effective mass and the width of the initial metallic π-electron band have been deter-mined, and it has been found that the conducting system in the crystals has a quasi-one-dimensional character. As temperature decreases, the spectra demonstrate substantial changes indicating the formation of the energy gap (or pseudogap) in the spectrum of electronic states in the range of ~1500–2500 cm?1. In the low-frequency region (700–1600 cm?1), a vibrational structure has been observed, and the most intense feature of the structure (ω = 1340 cm?1) is caused by the interaction of electrons with intramolecular vibrations of the C=C bonds of the EDT-TTF molecule. For temperatures of 15 and 9 K, the analysis of the spectra has been performed in the framework of the theoretical “phase phonon” model taking into account the interaction of electrons with the intramolecular vibrations. It has been concluded that the metal-insulator transition observed in the reflectance spectra of the crystals is similar to the Peierls dielectric transition that occurs in a system of electrons coupled with the intramolecular vibrations of the molecules forming the crystal.  相似文献   

5.
Auger spectra of thin fullerite (C60) films have been measured under the conditions precluding their electrostatic charging and destruction. The Auger line of these subjects, E f=268.3±0.2 eV, turned out to lie considerably lower in energy than that of the ion-beam amorphized graphite (E AG=272.3±0.2 eV) and of pyrographite (E PG=271.8±0.5 eV). Fullerite was found to convert to a graphitic form under irradiation by low-intensity electron beams used customarily in AES, reflection EELS, and inverse photoemission spectroscopy. It has been established that such beams produce noticeable changes in the fullerite structure already in a few minutes of irradiation. Fiz. Tverd. Tela (St. Petersburg) 39, 187–190 (January 1997)  相似文献   

6.
The polarized reflectance spectra of microcrystals of the new organic superconductor (EDT-TTF)4[Hg3I8]1 ? x (T c = 8.1 K for x = 0.027; T c = 7 K at 0.3 kbar for x = 0.019) have been investigated in the spectral region of 700–6000 cm?1 (0.087–0.740 eV) at temperatures ranging from 10 to 300 K. A quantitative analysis of the spectra has been performed in the framework of the phenomenological Drude and Drude-Lorentz dispersion models, as well as in the framework of the theoretical “phase phonon” model that takes into account the interaction of free electrons with intramolecular vibrations. The effective mass of charge carriers m*, the width of the initial metallic π-electron band W, and the integral t of the electron transfer between the molecular π-orbitals of neighboring molecules have been determined. In the low-frequency range (700–1600 cm?1), the vibrational structure associated with intramolecular vibrations of the EDT-TTF molecule has been revealed. It has been shown that the most intense feature (ω = 1330 cm?1) of this structure is caused by the interaction of “quasi-free” electrons with intramolecular vibrations.  相似文献   

7.
The electron energy loss spectra of ethane, propane, n-butane, n-pentane, n-hexane, isobutane, isopentane and neopentane in the region of carbon K-shell excitation have been recorded under dipole-dominated conditions (2.8 ke V impact energy, small angle). The spectra are dominated by transitions to unoccupied valence π1(CH2, CH3) and σ1(C-C) levels. Additional weak features are assigned to Rydberg transitions. The position of the main continuum feature in each spectrum is consistent with the predictions of an empirical relationship with bond length. Systematic variations of spectral intensities are observed which support our assignments. The dominant feature in the K-shell spectrum of ethane, which was previously assigned to C 1s → 3p Rydberg transitions, is reassigned to excitation to a 3p1(CH3 ), mixed Rydberg/valence orbital (of antibonding σ-1(C-H) character), in comparison to the other alkane spectra. An improved calibration value of 290.74(5) eV for the energy of the C 1s → π1 transition in CO2 is also obtained.  相似文献   

8.
The electronic structure of single-walled carbon nanotubes was experimentally investigated using x-ray photoelectron spectroscopy, reflection electron energy-loss spectroscopy, and Auger electron spectroscopy. A shake-up satellite structure observed near the C 1s core-level lines in the x-ray photoelectron spectra at high binding energies in the range 284–330 eV due to excitation of π and π + σ plasmons was studied. The effect of irradiation by 1-keV argon ions on the shape of the spectra was analyzed. The shape of the C 1s satellite spectra was found to be sensitive to Ar+ irradiation in the electron energy loss range 10–40 eV corresponding to excitation of π + σ plasmons. Auger spectroscopy revealed the presence of argon on the surface of ion-irradiated samples. The argon content increased to ~4 at. % with increasing irradiation dose. An analysis of the results obtained and their comparison with the data available in the literature led to a qualitative conclusion that the bond angles of the carbon atoms making up the walls of single-walled carbon nanotubes are distorted at sites exposed to Ar+ irradiation.  相似文献   

9.
《Physics letters. A》2020,384(1):126035
Lightweight carbon materials with excellent thermal and mechanical properties have important applications in aerospace industry. In this study, the stability, mechanical properties, lattice thermal conductivity, electronic structure, infrared and Raman spectrum of sp3 hybridized low-density fullerite C24 were investigated according to density functional theory (DFT) calculations. It was found that the fullerite C24 was both thermodynamic and dynamic stable. Quasi-harmonic approximation and Grüneisen parameter calculations clarified why the fullerite C24 had a positive thermal expansion coefficient at low temperature. The fullerite C24 also exhibited excellent mechanical properties. Interestingly, the Vickers hardness of carbon allotropes was found to almost be linear proportional to the density of a carbon material. HSE06 electronic structure calculations showed that it was a semiconductor with direct bandgap of 2.56 eV. Anharmonic lattice dynamic calculations showed that its thermal conductivity was higher than semiconductor silicon. Besides, Raman and infrared active modes as well as the corresponding spectra were presented.  相似文献   

10.
The precise spectra of Cosmic Ray(CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electron and positron spectra(?Φ = Φ_(e-)-Φ_(e+)) as being dominated by primary electrons. The resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of the standard model of CR propagation. In this work, we generalize the analytic one-dimensional two-halo model of diffusion to a three-dimensional realistic calculation by implementing spatial variant diffusion coefficients in the DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over-predicts the flux from tens of GeV to 100 GeV. To understand this issue, further experimental and theoretical studies are necessary.  相似文献   

11.
The K X-ray emission spectra of carbon and oxygen in calcite single crystals CaCO3 were measured. Owing to the polarization of the radiation the shape of both spectra shows a pronounced angular dependence, which makes it possible to separate the contributions of the π- and σ-valence electrons of the CO32? ion to the X-ray spectra, and to determine the sequence and the binding energies of the valence orbitals.  相似文献   

12.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

13.
14.
The energy distributions N(E) of secondary electrons emitted from GaP and InP samples bombarded with 40 keV Ar+ ions have been studied by a retarding potential method and an electronic derivation. The spectra show beyond an intensive peak developed at 2 eV, a detailed spectrum between 80 and 140 eV. The analysis of this spectrum reveales Auger electrons corresponding to L23(P) VV and L23MIV–V(Ga) V [or L23(P) NIV-V(In) V] transitions; moreover, peaks due to plasmon excitations and d band excitations can be distinguished.  相似文献   

15.
It has been found that, in contrast to the commonly accepted opinion, simultaneous irradiation by 15-keV Ar+ ions and 2.5-keV electrons at temperatures above 0.5T m (T m is the melting temperature) induces much larger sputtering of metallic copper, nickel, and steel than irradiation only by Ar+ ions. The effect increases with the temperature. At T = 0.7T m, the sputtering coefficients in the case of ion-electron irradiation are more than twice as large as the sputtering coefficients in the case of irradiation by Ar+ ions. The experiments on the sublimation of copper show that the sublimation rate in the case of the heating of a sample by an electron beam is higher than that in the case of heating in an electric vacuum oven. The revealed effects are explained by the electron-induced excitation of adatoms (atoms stuck over the surface, which appear owing to ion bombardment). Excited adatoms have a smaller binding energy with the surface and are sputtered more easily.  相似文献   

16.
Using a 200 keV electron spectrometer, with an energy resolution of ~0.25 eV and a momentum resolution of ~0.2 A-1, we have measured the energy loss spectra for transmission of electrons through thin (~600 Å) Ni films. These results address the general question of the validity of momentum transfer estimates in electron loss scattering.Using low-energy electron backscattering, we have observed the dipole forbidden M1 transition at 112 eV. For high-energy scattering, we have observed this transition only at high momentum transfer (q? 2 A-1). These results indicates sizable contributions from high momentum transfer collisions in the low-energy experiments.  相似文献   

17.
Vibrational analysis of highly resolved phosphorescence (P), flourescence (F) and absorption spectra of benzo[f]quinoxaline (BQ) in Shpolskii matrices, at 77 K, was carried out. The spectra were dominated by phenanthrene-type fundamental vibrations. The appearance of several out-of-plane (op) modes in the P spectrum as well as the P lifetime, much shortened relative to that of the parent hydrocarbon, point to the proximity of the lowest n, π1 and π, π1 states of the BQ molecule. High activity of op modes in the F spectrum and complex structure of the absorption spectrum onset have been explained in terms of the pseudo-Jahn-Teller interaction between close-lying S1 (π, π1)and S2(n, π1) states.According to calculations of the BQ electronic structure, performed using a modified INDO CI method, the T1(π, π1)-T2(n, π1) and S1(π, π1-S2(n, π1) energy gaps are about 1200 and 700 cm-1, respectively.  相似文献   

18.
19.
The energy spectra of electrons detached from O? and S? ions by 488.0 nm and 514.5 nm photons have been measured with high electron energy resolution (5 meV) in order to determine the branching ratios for the various2 P 3/2, 1/23P2, 1, 0 fine-structure transitions together with their respective angular distributions. Detailed information on the relative importance of thes- andd-wave continuum is obtained.  相似文献   

20.
Small angle inelastic scattering of 2.5 keV electrons was used to study inner shell excitation in the methyl halides at energy transfers between 50 and 700 eV. Discrete peaks due to the excitation of carbon K, fluorine K, chlorine L, bromine M4, 5 and iodine N 4, 5 electrons were observed. Correlations through the methyl halide series were used to aid in the assignment of features in the carbon K-shell spectra. A comparison of halogen inner-shell excitation structures with the carbon K-shell excitation structure in the same molecule allowed a complete assignment of all spectral features. The assignments proposed involve promotions of inner shell electrons to unoccupied valence and Rydberg orbitals. On the basis of our assignments of the chlorine L- and carbon K-shell electron energy loss spectra of CH 3Cl we propose an alternate assignment of the previously reported CH 3Cl chlorine K-shell photoabsorption spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号