首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The two tetradentate ligands H(2)L and H(2)L(Me) afford the slightly distorted square-planar low-spin Ni(II) complexes 1 and 2, which comprise two coordinated phenolate groups. Complex 1 has been electrochemically oxidized into 1(+), which contains a coordinated phenoxyl radical, with a contribution from the nickel orbital. In the presence of pyridine, 1(+) is converted into 1(Py) (+), an octahedral phenolate nickel(III) complex with two pyridines axially coordinated: An intramolecular electron transfer (valence tautomerism) is promoted by the geometrical changes, from square planar to octahedral, around the metal center. The tetradentate ligand H(2)L(Me), in the presence of pyridine, and the hexadentate ligand H(2)L(Py) in CH(2)Cl(2) afford, respectively, the octahedral high-spin Ni(II) complexes 2(Py) and 3, which involve two equatorial phenolates and two axially coordinated pyridines. At 100 K, the one-electron-oxidized product 2(Py) (+) comprises a phenoxyl radical ferromagnetically coupled to the high-spin Ni(II) ion, with large zero-field splitting parameters, while 3(+) involves a phenoxyl radical antiferromagnetically coupled to the high-spin Ni(II) ion.  相似文献   

2.
The Schiff base derived from salicylaldehyde and 2‐amino‐3‐hydroxypyridine affords a diversity of solid forms, two polymorphic pairs of the enol‐imino ( D1 a and D1 b ) and keto‐amino ( D2 a and D2 b ) desmotropes. The isolated phases, identified by IR spectroscopy, X‐ray crystallography, and 13C cross‐polarization/magnetic angle spinning (CP/MAS) NMR spectroscopy, display essentially planar molecular conformations characterized by strong intramolecular hydrogen bonds of the O? H???N ( D1 ) or N? H???O ( D2 ) type. A change in the position of the proton within this O???H???N system is accompanied by substantially different molecular conformations and, subsequently, by divergent supramolecular architectures. The appearance and interconversion conditions for each of the four phases have been established on the basis of a number of solution and solvent‐free experiments, and evaluated against the results of computational studies. Solid phases readily convert into the most stable form ( D1 a ) upon exposure to methanol vapor, heating, or by mechanical treatment, and these transformations are accompanied by a change in the color of the sample. The course of thermally induced transformations has been monitored in detail by means of temperature‐resolved powder X‐ray diffraction and infrared spectroscopy. Upon dissolution, all forms equilibrate immediately, as confirmed by NMR and UV/Vis spectroscopy in several solvents, with the equilibrium shifted far towards the enol tautomer. This study reveals the significance of peripheral groups in the stabilization of metastable tautomers in the solid state.  相似文献   

3.
ABSTRACT

The oxidation of a series of aryl 1-methyl-1-phenylethyl sulfides with H2O2 catalyzed by the two tetradentate nonheme-iron complexes [(PDP)FeII(SbF6)2] and [(BPMCN)FeII(OTf)2] occurs by an electron transfer-oxygen transfer (ET/OT) mechanism as supported by the observation of products deriving from fragmentation of the corresponding radical cations in association with S-oxidation products (sulfoxides).  相似文献   

4.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

5.
6.
Novel asymmetric macrocyclic Schiff bases were synthesized by the condensation of N,N′-bis(2-aminophenyl)-3,4-diphenylthiophene-2,5-dicarboxamide (1) with diformyl derivatives of phenol, furan, difurans, pyridine, pyrrole, and dipyrroles. The reaction proceeds in high yields and without by-products in methanol in the presence of inorganic and organic acids (proton-template condensation). In the case of monocyclic diformyl derivatives and di(5-formylfuran-2-yl) sulfide, the reaction occurs in 1,4-dioxane (templateless synthesis). The synthesized macrocycles were characterized by elemental analysis data and NMR and mass spectra. For Part 6, see Ref. 1. Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2152–2156, September, 2005.  相似文献   

7.
A novel series of Schiff base ruthenium complexes that are active catalysts in the field of atom transfer radical polymerization (ATRP), have been prepared. Moreover, when activated with trimethylsilyldiazomethane (TMSD), these species exhibit good catalytic activity in the ring opening metathesis polymerization (ROMP) of norbornene and cyclooctene. The activity for both the ROMP and ATRP reaction is dependent on the steric bulk and electron donating ability of the Schiff base ligand. The control over polymerization in ATRP was verified for the two substrates that exhibit the highest activity, namely MMA and styrene. The results show that the optimal ATRP equilibrium leading to a controlled polymerization, can be established by adjusting the steric and electronic properties of the Schiff base ligand.  相似文献   

8.
9.
10.
Aminoxyl radicals (R(2)NO(*)) are a valuable class of reactive intermediates with interesting synthetic and reactivity properties. This Minireview summarizes salient synthetic results obtained in radical oxidations using aminoxyl radicals, and then focuses on reactivity issues arising from recent literature surveys. The structural and reactivity features of the aminoxyl radical and substrate provides a possible explanation of the double reactivity of the aminoxyl radicals. This mechanistic dichotomy between H-atom abstraction and electron-abstraction routes is highlighted in this Minireview.  相似文献   

11.
One-and two-electron electrochemical oxidation of the (dppe)Ni(Cat) complexes (dppe is bis(diphenylphosphino)ethane, Cat is the sterically hindered catechol dianion) was studied. The transfer of the first electron proceeds reversibly to give paramagnetic species; parameters of their EPR spectra attest to a square planar geometry of one-electron oxidation products. The transfer of the second electron is irreversible because of co-proportionation of radical cations involving the initial complexes and the generated dications. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 99–102, January, 2007.  相似文献   

12.
《Journal of Coordination Chemistry》2012,65(16-18):2913-2923
Abstract

New air stable N-heterocyclic carbene functionalized Schiff base ligands (L) of the type 2-[-2-[3-(R)imidazol-1-yl]ethyliminomethyl]phenol [R?=?methyl (2), 2-pyridylmethyl (3)] were synthesized and characterized by NMR, IR, MS, and CHN analysis. Single crystal X-ray structural analysis of their Ni(II) complexes revealed square planar arrangement of the chelating ligands coordinated in tridentate (2, C^N^O) and tetradentate (3, N^C^N^O) modes around the metal. The three new isolated and fully characterized complexes were utilized as catalysts for the catalytic transfer hydrogenation of aliphatic ketones in 2-propanol as solvent and source of hydrogen. Based on 0.2?mol% catalyst concentration, the complexes showed activity for aliphatic ketones and 100% conversion (turnover number of 500) for cyclohexanone and all the aromatic ketones tested.  相似文献   

13.
This review highlights the structural properties and biological aspects of Schiff-base ligands of cadmium and tin derived from the azomethine group. It also presents extensive studies on syntheses, spectral, magnetic structural characteristics, and biological activities of the cadmium and tin complexes with Schiff bases, which have appeared in the literature.  相似文献   

14.
This review narrates the electron transfer reactions of various nickel(III) and nickel(IV) complexes reported during the period 1981 until today. The reactions have been categorized mainly with respect to the type of nickel complexes. The reactivity of nickel(III) complexes of macrocycles, 2,2′-bipyridyl and 1,10-phenanthroline, peptides and oxime–imine, and of nickel(IV) complexes derived from oxime–imine, oxime and miscellaneous ligands with various organic and inorganic electron donors have been included. Kinetic and mechanistic features associated with such interactions have been duly analyzed. The relevance of Marcus cross-relation equations in the delineation of the electron transfer paths has also been critically discussed.  相似文献   

15.
利用自编程序MOPAC-ET中AM1方法,及KT(Koopman'sTheorem)法,研究了二苯负离子体系的分子间电子转移现象,计算了其电子供、受体在不同距离下的V~A~B及它们之间的相关性,另外,还对两苯环间不同介入基团对电子转移的影响做了初步研究,发现不同的介入基团存在着较大的差异。  相似文献   

16.
A series of bis[4-(n-alkoxy)-N-(4′-R-phenyl)salicylideneiminato]oxovanadium(IV) complexes (n?=?6,?10,?14,?16,?18 and R?=?C3H7) were prepared and their mesogenic properties were investigated. The mesomorphic behaviors of the compounds were studied by polarized optical microscopy and differential scanning calorimetry. Ligands display SmA/SmC and unexpected nematic mesophases. The complexes bearing longer alkoxy carbon chain (n?=?10,?14,?16, and 18) showed both monotropic or enantiotropic transitions with smectic A and high ordered smectic E phases. However, the complex with shorter carbon chain length (n?=?6) showed monotropic transition with an unprecedented nematic (N) phase. A density functional theory study was carried out using DMol3 at BLYP/DNP level to obtain a stable optimized structure. A square-pyramidal geometry for the vanadyl complexes has been suggested. A νV=O stretching value of ~970?cm?1 corroborated absence of any V?=?O?···?V?=?O interactions. Cyclic voltammetry revealed a quasireversible one-electron response at 0.61?V for the VO(IV)–VO(V) redox couple. Variable temperature magnetic susceptibility measurements of the vanadyl complexes suggested absence of any exchange interactions among the vanadyl spin centers.  相似文献   

17.
The rates of the electron self‐exchange between uranyl(VI) and uranyl(V) complexes in solution have been investigated in detail with quantum chemical methods. The calculations have shown that the bond length of U? Oyl is elongated by 0.1 Å when the extra electron is localized on the sites. The diabatic potential surfaces are obtained. The inner reorganization energies are 212.6 and 226.8 kJ mol?1 for hydroxide and fluoride bridge systems, respectively. The solvent reorganization energies are 28.12 and 31.60 kJ mol?1 for hydroxide and fluoride bridge systems, respectively. The nuclear frequency factors are 3.17 × 1013 and 3.12 × 1013 s?1 for hydroxide and fluoride bridge systems, respectively. The electronic coupling matrix elements are 1.89 and 4.06 kJ mol?1 for hydroxide and fluoride bridge systems, respectively. The electron‐transfer rates of our calculations are 12.95 and 0.819 M?1 s?1 for hydroxide and fluoride bridge systems, respectively. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

18.
19.
Synthesis, characterization, microbiological activity and electrochemical properties of the Schiff-base ligands A1–A5 and their Cd(II) and Cu(II) metal complexes are reported. The ligands and their complexes have been characterized by elemental analysis, FT–IR, UV–Vis, 1H- and 13C-NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands are bidentate, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff-base ligands A1–A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the chosen strains include Bacillus megaterium and Candida tropicalis. The electrochemical properties of the ligands A1–A5 and their Cu(II) metal complexes have been investigated at different scan rates (100–500?mV?s?1) in DMSO.  相似文献   

20.
Transition metal cations Co2+, Ni2+ and Zn2+ form 1 : 1 : 1 ternary complexes with 2,2′‐bipyridine (bpy) and peptides in aqueous methanol solutions that have been studied for tripeptides GGG and GGL. Electrospray ionization of these solutions produced singly charged [Metal(bpy)(peptide ? H)]+ and doubly charged [Metal(bpy)(peptide)]2+ ions (Metal = metal ion) that underwent charge reduction by glancing collisions with Cs atoms at 50 and 100 keV collision energies. Electron transfer to [Metal(bpy)(peptide)]2+ ions was less than 4.2 eV exoergic and formed abundant fractions of non‐dissociated charge‐reduced intermediates. Charge‐reduced [Metal(bpy)(peptide)]+ ions dissociated by the loss of a hydrogen atom, ammonia, water and ligands that depended on the metal ion. The Ni and Co complexes mainly dissociated by the elimination of ammonia, water, and the peptide ligand. The Zn complex dissociated by the elimination of ammonia and bpy. A sequence‐specific fragment was observed only for the Co complex. Electron transfer to [Metal(bpy)(peptide ? H)]+ was 0.6–1.6 eV exoergic and formed intermediate radicals that were detected as stable anions after a second electron transfer from Cs. [Metal(bpy)(peptide ? H)] neutrals and their anions dissociated by the loss of bpy and peptide ligands with branching ratios that depended on the metal ion. Optimized structures for several spin states, electron transfer and dissociation energies were addressed by combined density functional theory and Møller–Plesset perturbational calculations to aid interpretation of experimental data. The experimentally observed ligand loss and backbone cleavage in charge‐reduced [Metal(bpy)(peptide)]+ complexes correlated with the dissociation energies at the present level of theory. The ligand loss in +CR? spectra showed overlap of dissociations in charge‐reduced [Metal(bpy)(peptide ? H)] complexes and their anionic counterparts which complicated spectra interpretation and correlation with calculated dissociation energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号