首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In repairable systems with redundancy, failed units can be replaced by spare units in order to reduce the system downtime. The failed units are sent to a repair shop or manufacturer for corrective maintenance and subsequently are returned for re-use. In this paper we consider a 1 out of n system with cold standby and we assume that repaired units are “as good as new”.When a unit has an increasing failure rate it can be advantageous to perform preventive maintenance in order to return it to its “as good as new” state, because preventive maintenance will take less time and tends to be cheaper. In the model we present we use age-replacement; a machine is taken out for preventive maintenance and replaced by a standby one if its age has reached a certain value, Tpm. In this paper we derive an approximation scheme to compute the expected uptime, the expected downtime and the expected costs per time unit of the system, given the total number of units and the age-replacement value, Tpm. Consequently the number of units and the value Tpm can be determined for maximum long-term economy.  相似文献   

2.
Journal of the Operational Research Society - This paper considers preventive maintenance policies for a standby system where preventive maintenance for an operating unit is possible but corrective...  相似文献   

3.
A warm standby n-system with operational and repair times following phase-type distributions is considered. The online unit goes through degradating levels, determined by inspections. Two types of repairs are performed, preventive and corrective, depending on the degradation level. The standby units undergo corrective repair. This systems is governed by a level-dependent-quasi-birth-and-death proces (LDQBD process), whose generator is constructed. The availability, rate of occurrence of failures, and other quantities of interest are calculated. A numerical example including an optimization problem and illustrating the calculations is presented. This system extend other previously studied in the literature.  相似文献   

4.
In this paper, we formulate an analytical model for the joint determination of an optimal age-dependent buffer inventory and preventive maintenance policy in a production environment that is subject to random machine breakdowns. Traditional preventive maintenance policies, such as age and periodic replacements, are usually studied based on simplified and non-realistic assumptions, as well as on the expected costs criterion. Finished goods inventories and the age-dependent likelihood of machine breakdowns are usually not considered. As a result, these policies could significantly extend beyond the anticipated financial incomes of the system, and lead to crises. In order to solve this problem, a more realistic analysis model is proposed in this paper to consider the effects of both preventive maintenance policies and machine age on optimal safety stock levels. Hence, a unified framework is developed, allowing production and preventive maintenance to be jointly considered. We use an age-dependent optimization model based on the minimization of an overall cost function, including inventory holdings, lost sales, preventive and corrective maintenance costs. We provide optimality conditions for the manufacturing systems considered, and use numerical methods to obtain an optimal preventive maintenance policy and the relevant age-dependent threshold level production policy. In this work, this policy is called the multiple threshold levels hedging point policy. We include numerical examples and sensitivity analyses to illustrate the importance and the effectiveness of the proposed methodology. Compared with other available optimal production and maintenance policies, the numerical solution obtained shows that the proposed age-dependent optimal production and maintenance policies significantly reduce the overall cost incurred.  相似文献   

5.
A machine consists of two stochastically failing units. Failure of either of the units causes a failure of the machine and the failed unit has to be replaced immediately. Associated with the units are running costs which increase with the age of the unit because of increasing maintenance costs, decreasing output, etc.A preventive replacement policy is proposed under which, at failure points, we also replace the second unit if its age exceeds a predetermined control limit. It is proved that, for two identical units with exponential life-time distributions and linear running costs, this policy is optimal and the optimal control limit is calculated. In an additional model we take into consideration the length of time it takes to replace one unit or both units.The method of solution is a variation of dynamic semi-Markov programming. Analytical results are obtained and the influence of the various parameters on them is investigated. Finally, we study the saving due to our policy in comparison with a policy in which only failed units are replaced.  相似文献   

6.
This paper considers a competing risk (degradation and sudden failure) maintenance situation. A maintenance model and a repair cost model are presented. The degradation state of the units is continuously monitored. When either the degradation level reaches a predetermined threshold or a sudden failure occurs before the unit reaches the degradation threshold level, the unit is immediately repaired (renewed) and restored to operation. The subsequent repair times increase with the number of renewals. This process is repeated until a predetermined time is reached for preventive maintenance to be performed. The optimal maintenance schedule that maximizes the unit availability subject to repair cost constraint is determined in terms of the degradation threshold level and the time to perform preventive maintenance.  相似文献   

7.
A novel optimal preventive maintenance policy for a cold standby system consisting of two components and a repairman is described herein. The repairman is to be responsible for repairing either failed component and maintaining the working components under certain guidelines. To model the operational process of the system, some reasonable assumptions are made and all times involved in the assumptions are considered to be arbitrary and independent. Under these assumptions, all system states and transition probabilities between them are analyzed based on a semi-Markov theory and a regenerative point technique. Markov renewal equations are constructed with the convolution of the cumulative distribution function of system time in each state and corresponding transition probability. By using the Laplace transform to solve these equations, the mean time from the initial state to system failure is derived. The optimal preventive maintenance policy that will provide the optimal preventive maintenance cycle is identified by maximizing the mean time from the initial state to system failure, and is determined in the form of a theorem. Finally, a numerical example and simulation experiments are shown which validated the effectiveness of the policy.  相似文献   

8.
9.
This paper addresses inventory policy for spare parts, when demand for the spare parts arises due to regularly scheduled preventive maintenance, as well as random failure of units in service. A stochastic dynamic programming model is used to characterize an ordering policy which addresses both sources of demand in a unified manner. The optimal policy has the form (s(k),S(k)), where k is the number of periods until the next scheduled preventive maintenance operation. The nature of the (s(k),S(k)) policy is characterized through numeric evaluation. The efficiency of the optimal policy is evaluated, relative to a simpler policy which addresses the failure replacement and preventive maintenance demands with separate ordering policies.  相似文献   

10.
针对带有一个冷贮备部件的两部件串联系统,本文首先提出一种预防维修与机会维修相结合的维修策略,运用更新报酬定理求得长期运行情况下的单位时间期望维修成本函数的表达式,然后研究最优的机会维修阀值,运用微分学理论求解最优解,最后用实例验证理论的正确性,从实际例子说明本文提出的维修策略可明显节约维修成本,为相应的带有冷贮备的多部件串联系统的维修策略分析提供参考,对企业设备的维修有实际指导意义。  相似文献   

11.
An optimal maintenance policy for a multistate deteriorating standby system is proposed in this study. Traditionally, a system could only presume two operational states: success or failure, and the maintenance policy is to determine the optimal number of standby components, subject to factors such as maintenance capability, cost of the standby items, etc., so as to minimize the operational cost. This study considers a more general production system in which progressive deterioration is incurred during the operating time, hence resulting in degrading performance. By modeling the system as a multistate deteriorating system, an optimal maintenance policy is obtained by determining the optimal number of standby components required in the system and the optimal state in which the replacement of deteriorating components shall be made.  相似文献   

12.
A two-unit standby redundant system with repair and preventive maintenance is considered under the following assumptions: (I) the inspection of an operative unit is made only if the other unit is in standby; and (II) an operative unit, which forfeited inspection due to assumption (I), undergoes inspection just upon repair completion of the failed unit (or inspection completion). We derive the Laplace-Stieltjes transform of the cumulative distribution function of the time to the first system failure and the mean time to the first system failure. Further, we obtain the necessary and sufficient conditions for an optimum preventive maintenance policy to exist with respect to the mean time to the first system failure. More importantly, under certain conditions, we find the analytical form of an optimum inspection time maximizing the mean time to the first system failure. A numerical example is presented.The work reported in this article was supported by the National Institutes of Health under Grant No. GM-16197-05. The authors would like to express their appreciation to Professor D. L. Jaquette and Professor R. Vasudevan, University of Southern California, for their advice and encouragement.  相似文献   

13.
This paper investigates preventive-maintenance warranty (PMW) policies for repairable products. When the length of a warranty period is pre-specified, the optimal number of preventive maintenance actions, corresponding maintenance degrees, and the maintenance schedule are jointly determined. We show that there exists a unique optimal policy such that the expected total warranty cost is minimized. Under some reasonable conditions, structural properties of the optimal policy are obtained. Using these properties, an algorithm is provided to efficiently search for the optimal policy. In the case where the failure density is Weibull, a closed form expression of the optimal policy is derived. Finally, the impact of providing preventive maintenance within a warranty period is illustrated through a numerical example.  相似文献   

14.
This paper reports on the development of a hybrid intelligent maintenance optimisation system (HIMOS) for decision support. It is a follow-up to an earlier paper published in the Journal of the Operational Research Society in 1995. Both papers refer to systems where there are very many components which may break down independently. When a component breaks down, corrective action (CO) is required. The problem is to determine the optimal maintenance policy, essentially the frequency of preventive maintenance (PM) which minimises the sum of down time due to PM and CO.HIMOS, like its predecessor IMOS, uses an ‘intelligent’ decision support system to carry out an automated analysis of the maintenance history data. Maintenance data are presented to the system and the most suitable mathematical model from a model-base is identified utilising a hybrid knowledge/case based system (KBS/CBR). Thus initially a rule base is applied to select a model, as in the case of IMOS. If no model is matched, the system reverts to its historical case-base to match the current case with a similar case that has been previously modelled. This double reasoning adds to the system's true learning capabilities (intelligence) and increases the rate of success of model selection. A prototype system is written in Visual Basic® for an IBM compatible PC. The study results include optimal PM intervals for a sample of industrial data sets. The results of the validation exercise of HIMOS against expert advice has shown that the system functions satisfactorily.  相似文献   

15.
We consider a manufacturing system in which an input generating installation transfers a raw material to a subsequent production unit. Both machines deteriorate stochastically with usage and may fail. For each machine the deteriorating process is described by some known transition probabilities between different degrees of deterioration. A buffer has been built between the two machines in order to cope with unexpected failures of the installation. A discrete-time Markov decision model is formulated for the optimal preventive maintenance of both machines. The maintenance times are geometrically distributed and the cost structure includes operating costs, storage costs, maintenance costs and costs due to the lost production. It is proved that for fixed buffer content and for fixed deterioration degree of one machine, the average-cost optimal policy initiates a preventive maintenance of the other machine if and only if its degree of deterioration exceeds some critical level. We study, by means of numerical results, the effect of the variation of some parameters on the optimal policy and on the minimum average cost. For the case in which the maintenance times follow continuous distributions, an approximate discrete-time Markov decision model is proposed.  相似文献   

16.
This paper presents a new model for the economic-statistical optimization of a Variable-Parameter Shewhart control scheme. The proposed model can be utilized to monitor processes where apart from multiple independent assignable causes, affecting both the mean and variance, failures can also occur. Each time an alarm is issued by the control scheme, preventive maintenance actions are initiated, whereas, corrective maintenance actions are required after a failure. The more realistic assumption of imperfect preventive maintenance actions has been considered. The optimal parameter values are selected through a bi-objective optimization problem formulated by the long-run average cost per time unit minimization, and the long-run expected availability maximization, subject to statistical constraints. A real case example is presented to illustrate the application of the model. An extended numerical investigation is utilized to evaluate the superiority of the proposed model.  相似文献   

17.
In this paper we consider a production-inventory system in which an input generating installation supplies a buffer with a raw material and a production unit pulls the raw material from the buffer with constant rate. The installation deteriorates in time and the problem of its optimal preventive maintenance is considered. It is assumed that the installation after the completion of its maintenance remains idle until the buffer is evacuated. Under a suitable cost structure it is shown that the average-cost optimal policy for fixed buffer content is of control-limit type, i.e. it prescribes a preventive maintenance of the installation if and only if its degree of deterioration is greater than or equal to a critical level. Using the usual regenerative argument, the average cost of a control-limit policy is computed exactly and then, the optimal control-limit policy is determined. Furthermore, the stationary probabilities of the system under the optimal policy are computed.  相似文献   

18.
We are interested in the MUT (Mean Up Time) of a one out of two system in cold standby with preventive maintenance: a preventive maintenance occurs when the working unit reaches a given age. We study in details the stationary distribution of the Markov chain describing the state of the system at the beginning of its working periods. We give exact analytical formulas from which we derive a way to compute the MUT and we compare the results with those of Smith and Decker [M.A.J. Smith, R. Decker, Preventive maintenance in a 1 out of n system: The uptime, downtime and costs, European Journal of Operational Research 99 (1997) 565–583] which are based on approximations. We also investigate some discontinuities problems.  相似文献   

19.
It is assumed that a unit is either in operation or is in repair. When the main unit is under repair, spare units which cannot be repaired are used. In this system the following quantities are of interest: (i) The time distribution and the mean time to first-system failure, given that the n spare units are provided at time 0. (ii) The probability that the number of the failed spare units are equal to exactly n during the interval (0, t], and its expected number during the interval (0, t]. These quantities are derived by solving the renewal-type equations.Two optimization problems are discussed using the results obtained, viz.: (i) The expected cost of two systems, one with both a main unit and spare units and the other with only spare units is considered. (ii) A preventive maintenance policy of the main unit is considered in order to minimize the expected cost rate. Some policies of the two problems are discussed under suitable conditions. Numerical examples are also presented.  相似文献   

20.
In this paper, we consider a periodic preventive maintenance model, from the manufacturer's perspective, which can be implemented to reduce the maintenance cost of a repairable product during a given warranty period. The product is assumed to deteriorate with age and the warranty policy we adopt in this paper takes into account the two factors of failure time and repair time of the product when the product failure occurs. Under the proposed two-factor warranty, a repair time threshold is pre-determined and if the repair takes more time than that of the threshold, the failed product is replaced with a renewed warranty policy. Otherwise, the product is only minimally repaired to return to the operating state. During such a renewable warranty period, preventive maintenance is conducted to reduce the rate of degradation periodically while the product is in operation. By assuming certain cost structures, we formulate the expected warranty cost during the warranty period from the manufacturer's perspective when a periodic preventive maintenance strategy is adapted. Although more frequent preventive maintenance increases the warranty cost, the chance of product failures would be reduced. The main aim of this paper is to accomplish the optimal trade-off between the warranty cost and the preventive maintenance period by determining the optimal preventive maintenance period that minimizes the total expected warranty cost during the warranty period. Assuming the power law process for the product failures, we illustrate our proposed maintenance model numerically and study the impact of relevant parameters on the optimal preventive maintenance policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号