首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of homobimetallic manganese cofacial porphyrin-corrole dyads were synthesized and investigated as to their electrochemistry, spectroelectrochemistry, and ligand binding properties in nonaqueous media. Four dyads were investigated, each of which contained a Mn(III) corrole linked in a face-to-face arrangement with a Mn(III) porphyrin. The main difference between compounds in the series is the type of spacer, 9,9-dimethylxanthene, anthracene, dibenzofuran, or diphenylether, which determines the distance and interaction between the metallomacrocycles. Each redox process of the porphyrin-corrole dyads was assigned on the basis of spectroscopic and electrochemical data and by comparison with reactions and properties of the monocorrole and the monoporphyrin which were examined under the same solution conditions. The Mn(III) porphyrin part of the dyad undergoes two major one-electron reductions in pyridine and benzonitrile, the first of which involves a Mn(III)/Mn(II) process and the second the addition of an electron to the conjugated π-ring system of the macrocycle. The Mn(III) corrole part of the dyads also exhibits two major redox processes, one involving Mn(III)/Mn(II) and the other Mn(III) to Mn(IV) under the same solution conditions. The potentials and reversibility of each electron transfer reaction were shown to depend upon the solvent, type of spacer separating the two macrocycles, and the presence or absence of axial ligation, the latter of which was investigated in detail for the case of acetate ion which was found to bind within the cavity of the dyad to both manganese centers, both before and after the stepwise electroreduction to the Mn(II) forms of the two macrocycles. An intramolecular chloride ion exchange between the porphyrin part of the dyads which contain Mn(III)Cl and the singly oxidized corrole in the dyad is observed after the Mn(III)/Mn(IV) reaction of the corrole, suggesting that chloride is coordinated inside the cavity in the neutral compound.  相似文献   

2.
Three face-to-face linked porphyrin-corrole dyads were investigated as to their electrochemistry, spectroelectrochemistry, and chloride-binding properties in dichloromethane or benzonitrile. The same three compounds were also investigated as to their ability to catalyze the electroreduction of dioxygen in aqueous 1 M HClO4 or HCl when adsorbed on a graphite electrode. The characterized compounds are represented as (PCY)H2Co, where P = a porphyrin dianion; C = a corrole trianion; and Y = a biphenylenyl, 9,9-dimethylxanthenyl, or anthracenyl spacer, which links the two macrocycles in a face-to-face arrangement. An axial binding of one or two Cl- ligands to the cobalt center of the corrole is observed for singly and doubly oxidized (PCY)H2Co, with the exact stoichiometry of the reaction depending upon the spacer size and the concentration of Cl- added to solution. No Cl- binding occurs for the neutral or reduced forms of the dyad, which contrasts with what is seen for the monocorrole, (Me4Ph5Cor)Co, where a single Cl- ligand is added to the Co(III) corrole in PhCN. The Co(III) form of the corrole in (PCY)H2Co also appears to be the catalytically active species in the electroreduction of dioxygen, which occurs at potentials associated with the Co(IV)/Co(III) reaction, that is, 0.35 V in 1 M HClO4 as compared to 0.31-0.42 V for the same three dyads in PhCN and 0.1 M TBAP. The potential for the catalytic electroreduction of O2 in HCl shifts negatively by 60 to 70 mV as compared to E(1/2) values in 1 M HClO4, consistent with the binding of Cl- to the Co(IV) form of the corrole and its rapid dissociation after electroreduction to Co(III) at the electrode surface.  相似文献   

3.
The synthesis of a novel family of heterobinuclear cofacial biphenylene (B), anthracene (A), 9,9-dimethylxanthene (X), or dibenzofuran (O) bridged porphyrin-corrole complexes, (PCY)MClCoCl, is reported, M being either an iron(III) or manganese(III) ion. Each complex was characterized by electrochemistry, mass spectrometry, UV-vis, IR, and electron spin resonance spectroscopy. Unlike previously examined biscobalt porphyrin-corrole dyads, the cobalt ion of the corrole moiety is present in a high-valence +4 oxidation state, as proven by electrochemistry, spectroelectrochemistry, and an X-ray diffraction study of (PCB)FeClCoCl, which shows the presence of a bound Cl- anion on the cobalt corrole. Structural data: (PCB)FeClCoCl x 0.5(C7H16) x 0.5(CH2Cl2) x 2H2O, triclinic, space group P1, a = 13.8463(3) A, b = 16.8164(5) A, c = 17.9072(6) A, alpha = 93.780(1) degrees, beta = 111.143(1) degrees, gamma = 97.463(2) degrees, Z = 2.  相似文献   

4.
The synthesis and characterization of three new cofacial biscorroles and three new linked Co(II) porphyrins and Co(III) corroles with the same face to face orientation are described. The biscorroles are represented as (BCS)Co(2), (BCO)Co(2), (BCX)Co(2) while the porphyrin-corrole dyads are represented as (PCA)Co(2), (PCB)Co(2), (PCO)Co(2) where BC represents the Co(III) cofacial biscorroles and PC represents the porphyrin-corrole complexes which are linked to each other by a dibenzothiophene (S), dibenzofuran (O), or 9,9-dimethylxanthene (X) bridge in the case of the corroles and an anthracene (A), biphenylene (B), or dibenzofuran (O) bridge in the case of the mixed macrocycle derivatives. The electrochemical and spectroscopic data on these new bismacrocycles are compared to those of previously reported biscorroles of the type (BCA)Co(2) and (BCB)Co(2). The CO and/or pyridine binding properties of each biscorrole and porphyrin-corrole in CH(2)Cl(2) are also presented. Only one CO ligand is bound axially to each corrole unit of the bismacrocycle but five- and six-coordinate pyridine complexes can be generated for the same compounds, with the exact stoichiometry depending upon the concentration of pyridine in solution. In all cases, the six-coordinate bispyridine corrole complex can be unambiguously identified by a strong diagnostic marker band located at 598-601 nm. The formation constants for pyridine binding to the biscorroles range from log K(1) = 3.14 to 5.08 while log K(2) ranges from 1.10 to 2.61 depending upon the specific spacer. Carbon monoxide binding constants range from log K = 3.6 to 4.0 in the case of the biscorroles and from log K = 3.4 to 4.1 in the case of the porphyrin-corrole dyads. These values also depend on the specific spacer in the complex and, like the pyridine binding constants, decrease in the order BCO > BCA > BCB for the biscorroles and PCO > PCA > PCB for the porphyrin-corrole complexes.  相似文献   

5.
The synthesis and characterization of cofacial copper biscorroles and porphyrin-corroles linked by a biphenylenyl or anthracenyl spacer are described. The investigated compounds are represented as (BCA)Cu(2) and (BCB)Cu(2) in the case of the biscorrole (BC) derivatives and (PCA)Cu(2) and (PCB)Cu(2) in the case of porphyrin (P)-corrole (C) dyads, where A and B represent the anthracenyl and biphenylenyl bridges, respectively. A related monomeric corrole (Me(4)Ph(5)Cor)Cu and monomeric porphyrin (Me(2)Et(6)PhP)Cu that comprise the two halves of the porphyrin-corrole dyads were also studied. Electron spin resonance (ESR), (1)H NMR, and magnetic measurements data demonstrate that the copper corrole macrocycle, when linked to another copper corrole or copper(II) porphyrin, can be considered to be a Cu(III) complex in equilibrium with a Cu(II) radical species, copper(III) corrole being the main oxidation state of the corrole species at all temperatures. The cofacial orientation of (BCB)Cu(2), (BCA)Cu(2), and (PCB)Cu(2) was confirmed by X-ray crystallography. Structural data: (BCB)Cu(2)(C(110)H(82)N(8)Cu(2).3CDCl(3)), triclinic, space group P, a = 10.2550(2) A, b = 16.3890(3) A, c = 29.7910(8) A, alpha = 74.792(1) degrees , beta = 81.681(1) degrees , gamma = 72.504(2) degrees , Z = 2; (BCA)Cu(2)(C(112)H(84)N(8)Cu(2).C(7)H(8).1.5H(2)O), monoclinic, space group P 2(1)/c, a = 16.0870(4) A, b = 35.109(2) A, c = 19.1390(8) A, beta = 95.183(3) degrees , Z = 4; (PCB)Cu(2)(C(89)H(71)N(8)Cu(2).CHCl(3)), monoclinic, space group P2(1)/n, a = 16.7071(3) A, b = 10.6719(2) A, c = 40.8555(8) A, beta = 100.870(1) degrees , Z = 4. The two cofacial biscorroles, (BCA)Cu(2) and (BCB)Cu(2), both show three electrooxidations under the same solution conditions. The reduction of (BCA)Cu(2) involves a reversible electron addition to each macrocycle at the same potential of E(1/2) = -0.20 V although (BCB)Cu(2) is reversibly reduced in two steps to give first [(BCB)Cu(2)](-) and then [(BCB)Cu(2)](2)(-), each of which was characterized by ESR spectroscopy as containing a Cu(II) center. These latter electrode reactions occur at E(1/2) = -0.36 and -0.51 V versus a saturated calomel reference electrode. The half-reduced and fully reduced (BCB)Cu(2) show similar Cu(II) ESR spectra, and no evidence of a triplet signal is observed. The two well-separated reductions of (BCB)Cu(2) to give [(BCB)Cu(2)](2)(-) can be attributed to a stronger pi-pi interaction between the two macrocycles of this dimer as compared to those of (BCA)Cu(2). The copper porphyrin-corrole dyads, (PCA)Cu(2) and (PCB)Cu(2), show five reversible oxidations and two reversible reductions, and these potentials are compared with corresponding values for electrochemical reactions of the porphyrin and corrole monomers under the same solution conditions.  相似文献   

6.
The syntheses of the first transition metal corrolazine complexes, in which the meso carbon atoms of a corrole framework have been replaced by N atoms, are reported. Metalation of the corrolazine [(TBP)(8)CzH(3)] (TBP = 4-tert-butylphenyl) (1) with Co(acac)(2) gives [(TBP)(8)CzCo(III)] (2) in good yield. Addition of PPh(3) to 2 in pyridine results in the formation of [(TBP)(8)CzCo(III)(PPh(3))] (3), which was characterized by X-ray crystallography. Likewise, addition of an excess of pyridine to 2 in CH(2)Cl(2) followed by slow diffusion of MeOH gives [(TBP)(8)CzCo(III)(py)(2)] (4) as a crystalline solid, which was also characterized by X-ray crystallography. The crystal structures of 3 and 4 reveal that the corrolazine cavity is significantly smaller ( approximately 0.1 A) than their regular corrole analogues. Characterization of 2-4 by UV-vis spectroscopy reveals some interesting features in the absorption spectra of these compounds, including a dramatic red-shift of the Soret band. In addition, binding of pyridine to 2 was evaluated quantitatively by UV-vis titration, revealing a formation constant of beta(2) = 9.0 x 10(7) M(-)(2), which is larger than any of the regular Co(III) corrole analogues.  相似文献   

7.
Three series of cobalt(III) corroles were tested as catalysts for the electroreduction of dioxygen to water. One was a simple monocorrole represented as (Me(4)Ph(5)Cor)Co, one a face-to-face biscorrole linked by an anthracene (A), biphenylene (B), 9,9-dimethylxanthene (X), dibenzofuran (O) or dibenzothiophene (S) bridge, (BCY)Co(2) (with Y = A, B, X, O or S), and one a face-to-face bismacrocyclic complex, (PCY)Co(2), containing a Co(II) porphyrin and a Co(III) corrole also linked by one of the above rigid spacers (Y = A, B, X, or O). Cyclic voltammetry and rotating ring-disk electrode voltammetry were both used to examine the catalytic activity of the cobalt complexes in acid media. The mixed valent Co(II)/Co(III) complexes, (PCY)Co(2), and the biscorrole complexes, (BCY)Co(2), which contain two Co(III) ions in their air-stable forms, all provide a direct four-electron pathway for the reduction of O(2) to H(2)O in aqueous acidic electrolyte when adsorbed on a graphite electrode, with the most efficient process being observed in the case of the complexes having an anthracene spacer. A relatively small amount of hydrogen peroxide was detected at the ring electrode in the vicinity of E(1/2) which was located at 0.47 V vs SCE for (PCA)Co(2) and 0.39 V vs SCE for (BCA)Co(2). The cobalt(III) monocorrole (Me(4)Ph(5)Cor)Co also catalyzes the electroreduction of dioxygen at E(1/2) = 0.38 V with the final products being an approximate 50% mixture of H(2)O(2) and H(2)O.  相似文献   

8.
Solvent effects on the electrochemistry and spectroscopic properties of alkyl- and aryl-substituted corroles in nonaqueous media are reported. The oxidation and reduction of six compounds containing zero to seven phenyl or substituted phenyl groups on the macrocycle were studied in four different nonaqueous solvents (CH(2)Cl(2), PhCN, THF, and pyridine) containing 0.1 M tetra-n-butylammonium perchlorate. Dimers were formed upon oxidation of all corroles in CH(2)Cl(2), but this was not the case in the other three solvents, where either monomers or dimers were formed upon oxidation depending upon the solvent Gutmann donor number and the number or location of aryl substituents on the macrocycle. The half-wave potentials were analyzed as a function of the number of aryl substituents on the macrocycle as well as the concentration of added pyridine to PhCN solutions of the compound, and these data were combined with data from the spectroelectrochemistry experiments to determine the stoichiometry of the species actually in solution after the first oxidation or first reduction of each compound. The results of these experiments indicate that reduction of the bispyridine adduct (Cor)Co(III)(py)(2) proceeds via the monopyridine complex (Cor)Co(III)(py) to give in each case the unligated cobalt(II) corrole [(Cor)Co(II)](-). In contrast, pyridine remains coordinated after electrooxidation, and the final product was characterized as [(Cor)Co(III)(py)(2)](+).  相似文献   

9.
Dicobalt or heterobimetallic cofacial bisporphyrins are up till now amongst the very few molecular electrocatalysts able to promote the direct reduction of dioxygen to water via a four-electron process in acidic medium. Numerous studies have been devoted to elucidate the key steps of this catalytic reaction and an important result has revealed an unexpected high dioxygen affinity for a mixed valence Co(II)/Co(III) cofacial porphyrin, the key intermediate complex being a μ-superoxo derivative. At the same time, the great importance assumed by ‘Pacman’ porphyrins and the recent developments in corrole chemistry have provided the stimulation to synthesise porphyrin–corrole dyads which might also transport and/or activate dioxygen. In the present paper, we report the stepwise synthesis and characterisation of a cofacial porphyrin–corrole bearing an anthracenyl bridge, (PCA)H5 where PCA is the pentaanion of 1-(13,17-diethyl-2,3,7,8,12,18-hexamethylporphyrin–5-yl)-8-(7,8,12,13-tetramethyl-2,3,17,18-tetraphenylcorrol-10-yl) anthracene. The synthesis and characterisation of the μ-superoxo Co(III)/Co(III) complex 〚(PCA)Co2Im2〛(μ-O2) is also described.  相似文献   

10.
To examine possible models for the g = 2.006 resonance seen when the hydroxylated heme-heme oxygenase complex in the Fe(III) state is treated with CO, the reactivities of CO and reducing agents with (py)(2)Fe(III)(OEPO) and [Fe(III)(OEPO)](2) (OEPO is the trianion of octaethyl-meso-hydroxyporphyrin) have been examined. A pyridine solution of (py)(2)Fe(III)(OEPO) reacts in a matter of minutes with zinc amalgam (or with hydrazine) under an atmosphere of dioxygen-free dinitrogen to produce bright-red (py)(2)Fe(II)(OEPOH).2py.0.33H(2)O, which has been isolated in crystalline form. The (1)H NMR spectrum of (py)(2)Fe(II)(OEPOH) in a pyridine-d(5) solution is indicative of the presence of a diamagnetic compound, and no EPR resonance was observed for this compound. Treatment of a solution of (py)(2)Fe(II)(OEPOH) in pyridine-d(5) with carbon monoxide produces spectral changes after a 30 s exposure that are indicative of the formation of diamagnetic (OC)(py)Fe(II)(OEPOH). Treatment of a green pyridine solution of (py)(2)Fe(III)(OEPO) with carbon monoxide reveals a slow color change to deep red over a 16 h period. Although a resonance at g = 2.006 was observed in the EPR spectrum of the sample during the reaction, the isolated product is EPR silent. The spectroscopic features of the final solution are identical to those of a solution formed by treating (py)(2)Fe(II)(OEPOH) with carbon monoxide. Addition of hydrazine to solutions of (OC)(py)Fe(II)(OEPOH) produces red, diamagnetic (OC)(N(2)H(4))Fe(II)(OEPOH).py in crystalline form. The X-ray crystal structures of (py)(2)Fe(II)(OEPOH).2py.0.33H(2)O and (OC)(N(2)H(4))Fe(II)(OEPOH).py have been determined. Solutions of diamagnetic (OC)(N(2)H(4))Fe(II)(OEPOH).py and (OC)(py)Fe(II)(OEPOH) are extremely air sensitive and are immediately converted in a pyridine solution into paramagnetic (py)(2)Fe(III)(OEPO) in the presence of dioxygen.  相似文献   

11.
The novel cobalt corrolazine (Cz) complexes (TBP)(8)CzCoCN (1) and (TBP)(8)CzCo(CCSiPh(3)) (2) have been synthesized and examined in light of the recent intense interest regarding the role of corrole ligands in stabilizing high oxidation states. In the case of 2, the molecular structure has been determined by X-ray crystallography, revealing a short Co[bond]C distance of 1.831(4) A and an intermolecular pi-stacking interaction between Cz ring planes, and this structure has been analyzed in regards to the electronic configuration. By a combination of spectroscopic techniques it has been shown that 1 is best described as a cobalt(III)[bond]pi-cation-radical complex, whereas 2 is likely best represented as the resonance hybrid (Cz)Co(IV)(CCSiPh(3)) <--> (Cz+*)Co(III)(CCSiPh(3)). The reduced cobalt(II) complex, [(TBP)(8)CzCo(II)(py)](-), has been generated in situ and shown to bind dioxygen at low temperature to give [(TBP)(8)CzCo(III)(py)(O(2))](-). For the reduced complex [(TBP)(8)CzCo(II)(py)](-), the EPR spectrum in frozen solution is indicative of a low-spin cobalt(II) complex with a d(z)2 ground state. Exposure of [(TBP)(8)CzCo(II)(py)](-) to O(2) leads to the reversible formation of the cobalt(III)-superoxo complex [(TBP)(8)CzCo(III)(py)(O(2))](-), which has been characterized by EPR spectroscopy. VT-EPR measurements show that the dioxygen adduct is stable up to T approximately 240 K. This work is the first observation, to our knowledge, of O(2) binding to a cobalt(II) corrole.  相似文献   

12.
Treatment of the mono-meso-substituted iron(II) octaethylporphyrin complexes, (py)2Fe(II)(meso-NO2-OEP), (py)2Fe(II)(meso-CN-OEP), (py)2Fe(II)(meso-HC(O)-OEP), (py)2Fe(II)(meso-Cl-OEP), (py)2Fe(II)(meso-OMe-OEP), (py)2Fe(II)(meso-Ph-OEP), and (py)2Fe(II)(meso-n-Bu-OEP), with hydrogen peroxide in pyridine-d5 at -30 degrees C in the strict absence of dioxygen has been monitored by 1H NMR spectroscopy. The product oxophlorin complexes are stable as long as the samples are protected from exposure to dioxygen. Hydrogen peroxide reacts cleanly with mono-meso-substituted iron(II) porphyrins in pyridine solution under an inert atmosphere to form mixtures of three possible oxygenation products, (py)2Fe(cis-meso-R-OEPO), (py)2Fe(trans-meso-R-OEPO), and (py)2Fe(OEPO). The yields of (py)2Fe(OEPO), which results from replacement of the unique meso substituent, as a function of the identity of the meso substituent decrease in the order NO2 > HC(O) approximately equal to CN approximately equal to Cl > OMe > Ph, Bu, which suggests that the species responsible for attack on the porphyrin periphery is nucleophilic in nature. A mechanism involving isoporphyrin formation through attack of hydroxide ion on a cationic iron porphyrin with an oxidized porphyrin ring is suggested. The identity of the unique meso functionality also affects the regiospecificity of substitution when the unique meso group is retained. Although random attack at the two different meso sites is expected to yield a cis/trans product ratio of 2, the observed ratios vary in the following order: cyano, 5.0; n-butyl, 4.9; chloro, 3.2; formyl, 2.6; methoxy, 1.9; phenyl 1.4.  相似文献   

13.
Conradie J  Ghosh A 《Inorganic chemistry》2006,45(13):4902-4909
DFT(PW91/TZP) calculations, including full geometry optimizations, have been carried on [FeII(P)(NO2)]-, Fe(III)(P)(NO2), [Fe(II)(P)(NO2)(py)]-, Fe(III)(P)(NO2)(py), [Fe(III)(P)(NO2)2]-, and Fe(III)(P)(NO2)(NO), where P is the unsubstituted porphine dianion, as well as on certain picket fence porphyrin (TPivPP) analogues. The bonding in [Fe(II)(P)(NO2)]- and Fe(III)(P)(NO2), as well as in their pyridine adducts, reveals a sigma-donor interaction of the nitrite HOMO and the Fe dz2 orbital, where the Fe-Nnitro axis is defined as the z direction and the nitrite plane is identified as xz. Both molecules also feature a pi-acceptor interaction of the nitrite LUMO and the Fe dyz orbital, whereas the SOMO of the Fe(III)-nitro complexes may be identified as dxz. The Fe(III)-nitro porphyrins studied all exhibit extremely high adiabatic electron affinities, ranging from about 2.5 eV for Fe(III)(P)(NO2) and Fe(III)(P)(NO2)(py) to about 3.4 eV for their TPivPP analogues. Transition-state optimizations for oxygen-atom transfer from Fe(III)(P)(NO2) and Fe(III)(P)(NO2)(py) to dimethyl sulfide yielded activation energies of 0.45 and 0.77 eV, respectively, which is qualitatively consistent with the observed far greater stability of Fe(III)(TPivPP)(NO2)(py) relative to Fe(III)(TPivPP)(NO2). Addition of NO to yield {FeNO}6 nitro-nitrosyl adducts such as Fe(P)(NO2)(NO) provides another mechanism whereby Fe(III)-nitro porphyrins can relieve their extreme electron affinities. In Fe(P)(NO2)(NO), the bonding involves substantial Fe-NO pi-bonding, but the nitrite acts essentially as a simple sigma-donor, which accounts for the relatively long Fe-Nnitro distance in this molecule.  相似文献   

14.
The reconstituted zinc-myoglobin (ZnMb) dyads, ZnMb-[M(II)(edta)], have been prepared by incorporating a zinc-porphyrin (ZnP) cofactor modified with ethylenediaminetetraacetic acid (H(4)edta) into apo-Mb. In case of the monomeric ZnP(edta) cofactor coordinated by one pyridine molecule, ZnP(py)(edta), a spontaneous 1:1 complex with a transient metal ion was formed in an aqueous solvent, and the photoexcited singlet state of ZnP, (1)(ZnP)*, was quenched by the [Cu(II)(edta)] moiety through intramolecular photoinduced electron-transfer (ET) reaction. The rate constant for the intramolecular quenching ET (k(q)) at 25 degrees C was successfully obtained as k(q) = 5.1 x 10(9) s(-1). In the case of Co(2+), Ni(2+), and Mn(2+), intersystem crossing by paramagnetic effect was mainly considered between (1)(ZnP)* and the [M(II)(edta)] complex. For the ZnMb-[M(II)(edta)] systems, the intramolecular ET reaction between the excited singlet state of (1)(ZnMb)* and the [Cu(II)(edta)] moieties provided the slower quenching rate constant, k(q) = 2.1 x 10(8) s(-1), compared with that of the ZnP(py)(edta) one. Kinetic studies also presented the efficient fluorescence quenching of the (1)(ZnMb)*-[Co(II)(edta)] dyad. Our study clearly demonstrates that wrapping of the ZnP cofactor by the apoprotein matrix and synthetic manipulation at the Mb surface ensure metal ion-sensitive fluorescent dynamics of ZnMb and provides valuable information to elucidate the complicated mechanism of the biological photoinduced ET reactions of hemoproteins.  相似文献   

15.
A theoretical comparative study of complexes of porphyrin (P), porphyrazine (Pz), and phthalocyanine (Pc) with metal (M) = Fe, Co, Ni, Cu, and Zn has been carried out using a DFT method. The calculations provide a clear elucidation of the ground states for the MP/Pz/Pc molecules and for a series of [MP/Pz/Pc](x-) and [MP/Pz/Pc](y+) ions (x = 1, 2, 3, 4; y = 1, 2). There are significant differences among MP, MPz, and MPc in the electronic structure and other calculated properties. For FeP/Pz and CoP/Pz, the first oxidation occurs at the central metal, while it is the macroring of FePc and CoPc that is the site of oxidation. The smaller coordination cavity results in a stronger ligand field in Pz than in P. However, the benzo annulation produces a surprisingly strong destabilizing effect on the metal-macrocycle bonding. The effects of Cl axial bonding upon the electronic structures of the iron(III) complexes of P, Pz, and Pc were examined, as was the bonding of pyridine (py) to NiP, NiPz, and NiPc. The porphinato core size plays a crucial role in controlling the spin state of Fe(III) in these complexes. FePc(Cl) is predicted to be a pure intermediate-spin system, whereas NiPz(py)(2) and NiPc(py)(2) are metastable in high-spin (S = 1) states. The NiPz/Pc-(py)(2) binding energy curve has only a shallow well that facilitates decomposition of the complex. The NiP-(py)(2) bond energy is small, but the relatively deep well in the binding energy curve ought to make this system stable to decomposition.  相似文献   

16.
The new heterodinuclear mixed valence complex [Fe(III)Mn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-((2-hydroxybenzyl)(2-pyridylmethyl))-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized. Compound 1 crystallizes in the monoclinic system, space group P2(1)/c, and has an Fe(III)Mn(II)(mu-phenoxo)-bis(mu-carboxylato) core. Two quasireversible electron transfers at -870 and +440 mV versus Fc/Fc(+) corresponding to the Fe(II)Mn(II)/Fe(III)Mn(II) and Fe(III)Mn(II)/Fe(III)Mn(III) couples, respectively, appear in the cyclic voltammogram. The dinuclear Fe(III)Mn(II) center has weakly antiferromagnetic coupling with J = -6.8 cm(-1) and g = 1.93. The (57)Fe M?ssbauer spectrum exhibits a single doublet, delta = 0.48 mm s(-1) and DeltaE(Q) = 1.04 mm s(-1) for the high spin Fe(III) ion. Phosphatase-like activity at pH 6.7 with the substrate 2,4-bis(dinitrophenyl)phosphate reveals saturation kinetics with the following Michaelis-Menten constants: K(m) = 2.103 mM, V(max) = 1.803 x 10(-5) mM s(-1), and k(cat) = 4.51 x 10(-4) s(-1).  相似文献   

17.
Electrochemical, magnetic, and spectroscopic properties are reported for homoleptic divalent (M = Mn, Fe, Co, Ni, Ru) and trivalent (M = Cr, Mn, Fe, Co) metal-bis[poly(pyrazolyl)borate] complexes, [M(pzb)(2)](+/0), where pzb(-) = hydrotris(pyrazolyl)borate (Tp), hydrotris(3,5-dimethylpyrazolyl)borate (Tp), or tetrakis(pyrazolyl)borate (pzTp). Ligand field strengths in metal-pzb complexes increase as Tp < Tp < pzTp, which reflects the importance of steric rather than electronic effects on spectroscopic properties. However, metal-centered redox potentials become more negative as pzTp < Tp < Tp, which follows the electron-donating ability of the ligands. Co(III)/Co(II) and Mn(III)/Mn(II) electrode reactions are accompanied by a change in metal atom spin-state; i.e., (S = 0) [Co(pzb)(2)](+) + e(-) <==> (S = 3/2) [Co(pzb)(2)] and (S = 1) [Mn(pzb)(2)](+) + e(-) <==> (S = 5/2) [Mn(pzb)(2)]. Apparent heterogeneous electron-transfer rate constants derived from sweep-rate dependent cyclic voltammetric peak potential separations in 1,2-dichloroethane are small and decrease as pzTp > Tp > Tp for the Co(III)/Co(II) couples. Slow electron transfer is characteristic of coupled electron transfer and spin exchange. [M(Tp)(2)](+/0) redox potentials relative to values for other homoleptic MN(6)(3+/2+) couples change as M varies from Cr to Ni. For early members of the series, [M(Tp)(2)](+/0) potentials nearly equal those of complexes with aliphatic N-donor ligands (e.g., triazacyclononane, sarcophagine). However, [M(Tp)(2)](+/0) potentials approach those of [M(bpy)(3)](3+/2+) for later members of the series. The variation suggests a change in the nature of the metal-pzb interaction upon crossing the first transition row.  相似文献   

18.
The electrochemistry and spectroscopic properties of three iron corroles were examined in benzonitrile, dichloromethane, and pyridine containing 0.1 M tetra-n-butylammonium perchlorate or tetra-n-ethylammonium hexafluorophosphate as supporting electrolyte. The investigated compounds are represented as (OEC)Fe(IV)(C(6)H(5)), (OEC)Fe(IV)Cl, and (OEC)Fe(III)(py), where OEC is the trianion of 2,3,7,8,12,13,17,18-octaethylcorrole. Each iron(IV) corrole undergoes two one-electron reductions and two or three one-electron oxidations depending upon the solvent. Under the same solution conditions, the iron(III) corrole undergoes a single one-electron reduction and one or two one-electron oxidations. Each singly oxidized and singly reduced product was characterized by UV-vis and/or EPR spectroscopy. The data indicate a conversion of (OEC)Fe(IV)(C(6)H(5)) and (OEC)Fe(IV)Cl to their iron(III) forms upon a one-electron reduction and to iron(IV) corrole pi cation radicals upon a one-electron oxidation. The metal center in [(OEC)Fe(III)(C(6)H(5))](-) is low spin (S = (1)/(2)) as compared to electrogenerated [(OEC)Fe(III)Cl](-), which contains an intermediate-spin (S = (3)/(2)) iron(III). (OEC)Fe(III)(py) also contains an intermediate-spin-state iron(III) and, unlike previously characterized (OEC)Fe(III)(NO), is converted to an iron(IV) corrole upon oxidation rather than to an iron(III) pi cation radical. Singly oxidized [(OEC)Fe(IV)(C(6)H(5))](*)(+) is the first iron(IV) tetrapyrrole pi cation radical to be isolated and was structurally characterized as a perchlorate salt. It crystallizes in the triclinic space group P&onemacr; with a = 10.783(3) ?, b = 13.826(3) ?, c = 14.151(3) ?, alpha = 78.95(2) degrees, beta = 89.59(2) degrees, and gamma = 72.98(2) degrees at 293 K with Z = 2. Refinement of 8400 reflections and 670 parameters against F(o)(2) yields R1 = 0.0864 and wR2 = 0.2293. The complex contains a five-coordinated iron with average Fe-N bond lengths of 1.871(3) ?. The formulation of the electron distribution in this compound was confirmed by M?ssbauer, X-ray crystallographic, and magnetic susceptibility data as well as by EPR spectroscopy, which gives evidence for strong antiferromagnetic coupling between the iron(IV) center and the singly oxidized corrole macrocycle.  相似文献   

19.
The binding of pyridine by V(II) in aqueous solution shows evidence for the late onset of cooperativity. The K(1) governing formation of [V(py)](2+) (lambda(max) = 404 nm, epsilon(max) = 1.43 +/- 0.3 M(-1) cm(-1)) was determined spectrophotometrically to be 11.0 +/- 0.3 M(-)(1), while K(1) for isonicotinamide was found to be 5.0 +/- 0.1 M(-1). These values are in the low range for 3d M(2+) ions and indicate that V(II).py back-bonding is not significant in the formation of the 1:1 complex. Titration of 10.5 mM V(II) with pyridine in aqueous solution showed an absorption plateau at about 1 M added pyridine, indicating a reaction terminus. Vanadium K-edge EXAFS analysis of 63 mM V(II) in 2 M pyridine solution revealed six first-shell N/O ligands at 2.14 A and 4 +/- 1 pyridine ligands per V(II). UV/vis absorption spectroscopy indicated that the same terminal V(II) species was present in both experiments. Model calculations showed that in the absence of back-bonding only 2.0 +/- 0.2 and 2.4 +/- 0.2 pyridine ligands would be present, respectively. Cooperativity in multistage binding of pyridine by [V(aq)](2+) is thus indicated. XAS K-edge spectroscopy of crystalline [V(O(3)SCF(3))(2)(py)(4)] and of V(II) in 2 M pyridine solution each exhibited the analogous 1s --> (5)E(g) and 1s --> (5)T(2g) transitions, at 5465.5 and 5467.5 eV, and 5465.2 and 5467.4 eV, respectively, consistent with the EXAFS analysis. In contrast, [V(py)(6)](PF(6))(2) and [V(H(2)O)(6)]SO(4) show four 1s --> 3d XAS transitions suggestive of a Jahn-Teller distorted excited state. Comparison of the M(II)[bond]N(py) bond lengths in V(II) and Fe(II) tetrapyridines shows that the V(II)[bond]N(py) distances are about 0.06 A shorter than predicted from ionic radii. For [VX(2)(R-py)(4)] (X = Cl(-), CF(3)SO(3)(-); R = 4-Et, H, 3-EtOOC), the E(1/2) values of the V(II)/V(III) couples correlate linearly with the Hammett sigma values of the R group. These findings indicate that pi back-bonding is important in [V(py)(4)](2+) even though absent in [V(py)](2+). The paramagnetism of [V(O(3)SCF(3))(2)(py)(4)] in CHCl(3), 3.8 +/- 0.2 mu(B), revealed that the onset of back-bonding is not accompanied by a spin change. Analysis of the geometries of V(II) and Fe(II) tetrapyridines indicates that the ubiquitous propeller motif accompanying tetrapyridine ligation may be due to eight dipole interactions arising from the juxtaposed C-H edges and pi clouds of adjoining ligands, worth about -6 kJ each. However, this is not the source of the cooperativity in the binding of multiple pyridines by V(II) because the same interactions are present in the Fe(II)-tetrapyridines, which do not show cooperative ligand binding. Cooperativity in the binding of pyridine by V(II) is then assigned by default to V(II)-pyridine back-bonding, which emerges only after the first pyridine is bound.  相似文献   

20.
The electron-transfer oxidation and subsequent cobalt-carbon bond cleavage of vitamin B12 model complexes were investigated using cobaloximes, (DH)2Co(III)(R)(L), where DH- = the anion of dimethylglyoxime, R = Me, Et, Ph, PhCH2, and PhCH(CH3), and L = a substituted pyridine, as coenzyme B12 model complexes and [Fe(bpy)3](PF6)3 or [Ru(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) as a one-electron oxidant. The rapid one-electron oxidation of (DH)2Co(III)(Me)(py) (py = pyridine) with the oxidant gives the corresponding Co(IV) complexes, [(DH)2Co(IV)(Me)(py)]+, which were well identified by the ESR spectra. The reorganization energy (lambda) for the electron-transfer oxidation of (DH)2Co(Me)(py) was determined from the ESR line broadening of [(DH)2Co(Me)(py)]+ caused by the electron exchange with (DH)2Co(Me)(py). The lambda value is applied to evaluate the rate constants of photoinduced electron transfer from (DH)2Co(Me)(py) to photosensitizers in light of the Marcus theory of electron transfer. The Co(IV)-C bond cleavage of [(DH)2Co(Me)(py)]+ is accelerated significantly by the reaction with a base. The overall activation energy for the second-order rate constants of Co(IV)-C bond cleavage of [(DH)2Co(IV)(Me)(py)]+ in the presence of a base is decreased by charge-transfer complex formation with a base, which leads to a negative activation energy for the Co(IV)-C cleavage when either 2-methoxypyridine or 2,6-dimethoxypyridine is used as the base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号