首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on exact Green strain of spatial curved beam, the nonlinear strain-displacement relation for plane curved beam with varying curvature is derived. Instead of using the previous straight beam elements, curved beam elements are used to approximate the curved beam with varying curvature. Based on virtual work principle, rigid-flexible coupling dynamic equations are obtained. Physical experiments were carried out to capture the large overall motion and the strain of curved beam to verify the present rigid-flexible coupling formulation for curved beam based on curved beam element. Numerical results obtained from simulations were compared with those results from the physical experiments. In order to illustrate the effectiveness of the curved beam element methodology, the simulation results of present curved beam elements are compared with those obtained by previous straight beam elements. The dynamic behavior of a slider-crank mechanism with an initially curved elastic connecting rod is investigated. The advantage of employing generalized-α method is pointed out and the special nonlinear dynamic characteristics of the curved beam are concluded.  相似文献   

2.
The previous low-order approximate nonlinear formulations succeeded in capturing the stiffening terms, but failed in simulation of mechanical systems with large deformation due to the neglect of the high-order deformation terms. In this paper, a new hybrid-coordinate formulation is proposed, which is suitable for flexible multibody systems with large deformation. On the basis of exact strain–displacement relation, equations of motion for flexible multibody system are derived by using virtual work principle. A matrix separation method is put forward to improve the efficiency of the calculation. Agreement of the present results with those obtained by absolute nodal coordinate formulation (ANCF) verifies the correctness of the proposed formulation. Furthermore, the present results are compared with those obtained by use of the linear model and the low-order approximate nonlinear model to show the suitability of the proposed models. The project supported by the National Natural Science Foundation of China (10472066, 50475021).  相似文献   

3.
Nonlinear formulation for flexible multibody system with large deformation   总被引:1,自引:0,他引:1  
In this paper, nonlinear modeling for flexible multibody system with large deformation is investigated. Absolute nodal coordinates are employed to describe the displacement, and variational motion equations of a flexible body are derived on the basis of the geometric nonlinear theory, in which both the shear strain and the transverse normal strain are taken into account. By separating the inner and the boundary nodal coordinates, the motion equations of a flexible multibody system are assembled. The advantage of such formulation is that the constraint equations and the forward recursive equations become linear because the absolute nodal coordinates are used. A spatial double pendulum connected to the ground with a spherical joint is simulated to investigate the dynamic performance of flexible beams with large deformation. Finally, the resultant constant total energy validates the present formulation. The project supported by the National Natural Science Foundation of China (10472066, 10372057). The English text was polished by Yunming Chen.  相似文献   

4.
This paper explores the critical and post-bulging bifurcation of a cylindrical dielectric elastomer (DE) tube undergoing finite deformation under electro-mechanical coupling loading. Explicit expressions for the critical conditions of electro-mechanical bifurcation are derived by using a simplified mathematical method. The post-bifurcation path is comprehensively investigated by specifying the material model as ideal dielectric elastomer. In the post-bifurcation analysis, we analytically establish conditions for the phase coexistence of steady propagation and analyze the physical implications. We demonstrate a global instability under force or voltage control and a localized instability under volume or charge control. Cylindrical tube experiments have been carried out under electro-mechanical coupling loading to verify the theoretical predictions. Good agreements on the critical conditions as well as the post-bifurcation path are obtained. This work characterizes the bifurcation mechanism of rubber-like materials under complex coupling loading.  相似文献   

5.
Geometric and material nonlinear analysis of tensegrity structures   总被引:2,自引:1,他引:2  
A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.  相似文献   

6.
This paper presents a geometric nonlinear analysis formulation for beams of functionally graded cross-sections by means of a Total Lagrangian formulation. The influence of material gradation on the numerical response is investigated in detail. Two examples are given that illustrate the main features of the formulation, in which the behavior of beams of graded cross-sections is compared with homogeneous material beams. A motivation for this work is the potential development of functionally graded risers for the offshore oil exploration industry.  相似文献   

7.
A newly-developed numerical algorithm, which is called the new Generalized-α (G-α) method, is presented for solving structural dynamics problems with nonlinear stiffness. The traditional G-α method has undesired overshoot properties as for a class of α-method. In the present work, seven independent parameters are introduced into the single-step three-stage algorithmic formulations and the nonlinear internal force at every time interval is approximated by means of the generalized trapezoidal rule, and then the algorithm is implemented based on the finite difference theory. An analysis on the stability, accuracy, energy and overshoot properties of the proposed scheme is performed in the nonlinear regime. The values or the ranges of values of the seven independent parameters are determined in the analysis process. The computational results obtained by the new algorithm show that the displacement accuracy is of order two, and the acceleration can also be improved to a second order accuracy by a suitable choice of parameters. Obviously, the present algorithm is zero-stable, and the energy conservation or energy decay can be realized in the high-frequency range, which can be regarded as stable in an energy sense. The algorithmic overshoot can be completely avoided by using the new algorithm without any constraints with respect to the damping force and initial conditions.The English text was polished by Keren Wang.  相似文献   

8.
A general geometrically exact nonlinear theory for the dynamics of laminated plates and shells under-going large-rotation and small-strain vibrations in three-dimensional space is presented. The theory fully accounts for geometric nonlinearities by using the new concepts of local displacements and local engineering stress and strain measures, a new interpretation and manipulation of the virtual local rotations, an exact coordinate transformation, and the extended Hamilton principle. Moreover, the model accounts for shear coupling effects, continuity of interlaminar shear stresses, free shear-stress conditions on the bonding surfaces, and extensionality. Because the only differences among different plates and shells are the initial curvatures of the coordinates used in the modeling and all possible initial curvatures are included in the formulation, the theory is valid for any plate or shell geometry and contains most of the existing nonlinear and shear-deformable plate and shell theories as special cases. Five fully nonlinear partial-differential equations and corresponding boundary and corner conditions are obtained, which describe the extension-extension-bending-shear-shear vibrations of general laminated two-dimensional structures and display linear elastic and nonlinear geometric coupling among all motions. Moreover, the energy and Newtonian formulations are completely correlated in the theory.  相似文献   

9.
In the present paper, the geometric nonlinear formulation is developed for dynamic stiffening of a rectangular plate undergoing large overall motions. The dynamic equations, which take into account the stiffening terms, are derived based on the virtual power principle. Finite element method is employed for discretization of the plate. The simulation results of a rotating rectangular plate obtained by using such geometric nonlinear formulation are compared with those obtained by the conventional linear method without consideration of the stiffening effects. The application limit of the conventional linear method is clarified according to the frequency error. Furthermore, the accuracy of the assumed mode method is investigated by comparison of the results obtained by using the present finite element method and those obtained by using the assumed mode method.  相似文献   

10.
A nonlinear field theory of deformable dielectrics   总被引:2,自引:0,他引:2  
Two difficulties have long troubled the field theory of dielectric solids. First, when two electric charges are placed inside a dielectric solid, the force between them is not a measurable quantity. Second, when a dielectric solid deforms, the true electric field and true electric displacement are not work conjugates. These difficulties are circumvented in a new formulation of the theory in this paper. Imagine that each material particle in a dielectric is attached with a weight and a battery, and prescribe a field of virtual displacement and a field of virtual voltage. Associated with the virtual work done by the weights and inertia, define the nominal stress as the conjugate to the gradient of the virtual displacement. Associated with the virtual work done by the batteries, define the nominal electric displacement as the conjugate to the gradient of virtual voltage. The approach does not start with Newton's laws of mechanics and Maxwell-Faraday theory of electrostatics, but produces them as consequences. The definitions lead to familiar and decoupled field equations. Electromechanical coupling enters the theory through material laws. In the limiting case of a fluid dielectric, the theory recovers the Maxwell stress. The approach is developed for finite deformation, and is applicable to both elastic and inelastic dielectrics. As applications of the theory, we discuss material laws for elastic dielectrics, and study infinitesimal fields superimposed upon a given field, including phenomena such as vibration, wave propagation, and bifurcation.  相似文献   

11.
Using a recently established liquid crystal model for vesicles, we present a theoretical method to analyze the morphological stability of liquid crystal vesicles in an electric field. The coupled mechanical-electrical effects associated with elastic bending, osmotic pressure, surface tension, Max- well pressure, as well as flexoelectric and dielectric proper- ties of the membrane are taken into account. The first and second variations of the free energy are derived in a com- pact form by virtue of the surface variational principle. The former leads to the shape equation of a vesicle embedded in an electric field, and the latter allows us to examine the stabil- ity of a given vesicle morphology. As an illustrative exam- ple, we analyze the stability of a spherical vesicle under a uniform electric field. This study is helpful for understanding and revealing the morphological evolution mechanisms of vesicles in electric fields and some associated phenomena of cells.  相似文献   

12.
Because rigidity of either hub or rim of diaphragm coupling is much greater than that of the disk, and asymmetrical bending is under the condition of high speed revolution, an assumption is made that each circle in the middle plane before deforma- tion keeps its radius unchanged after deformation, but the plane on which the circle lies has a varying deflecting angle. Based on this assumption, and according to the principle of energy variation, the corresponding Euler's equation can be obtained, which has the primary integral. By neglecting some subsidiary factors, an analytic solution is obtained. Applying these formulas to a hyperbolic model of diaphragm, the results show that the octahedral shear stress varies less along either radial or thickness direction, but fluctuates greatly and periodically along circumferential direction. Thus asymmetrical bending significantly affects the material's fatigue.  相似文献   

13.
Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations to an elastic beam with free large overall motion. Based on initial stress method, the nonlinear coupling equations of elastic beams are obtained with free large overall motion and the attached stiffness matrix is derived by solving sub-static formulation. The angular velocity and the tip deformation of the elastic pendulum are calculated. The analytical results show that the simulation results of the present model are tabled and coincide with the one-order approximate model. It is shown that the simulation results accord with energy conservation principle.  相似文献   

14.
This paper systematically deals with the following three problems: (1) Some numerical schemes in coupling FEM- and BEM: including condensation of the boundary integral equation, symmetrization of equivalent stiffness matrix and treatment of traction discontinuity, (2) Coupling of elastoplastic finite elements to elastic boundary elements, (3) Coupling of elasto-viscoplastic finite elements to elastic boundary elements and numerical stability condition.  相似文献   

15.
A refined geometrically nonlinear formulation of a thin-shell finite element based on the Kirchhoff-Love hypotheses is considered. Strain relations, which adequately describe the deformation of the element with finite bending of its middle surface, are obtained by integrating the differential equation of a planar curve. For a triangular element with 15 degrees of freedom, a cost-effective algorithm is developed for calculating the coefficients of the first and second variations of the strain energy, which are used to formulate the conditions of equilibrium and stability of the discrete model of the shell. Accuracy and convergence of the finite-element solutions are studied using test problems of nonlinear deformation of elastic plates and shells. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 160–172, September–October, 2007.  相似文献   

16.
为了考虑高速列车、板式无砟轨道和桥梁相互作用的特点,需将列车模拟为质量-弹簧-阻尼多刚体相互约束的系统,通过列车车轮与钢轨的接触关系,建立车-轨-桥耦合系统的运动方程。重点分析了双线列车以不同工况通过高速铁路桥梁时,列车行驶状态(速度和加速度)、列车悬挂系数和钢轨-轨道-桥梁连接参数分别对车-轨-桥耦合系统的动力学性能影响。结果表明,(1)列车的加速度和速度的变化对耦合系统有不同程度的影响,随着列车行驶速度与加速度在一定范围内增加,车体自身结构的位移振动响应逐渐减小,而钢轨和桥梁结构的位移振动响应则不断增加;(2)列车悬挂参数的改变对列车自身结构影响较大,而对钢轨和桥梁结构影响很小;(3)车体一系刚度系数增大会引起列车系统结构振动响应变大,但车体二系刚度系数的增加却抑制了车体结构的振动响应;(4)除了钢轨的最大加速度随着连续刚度系数增加呈线性递减外,列车、钢轨和桥梁的振动响应不易受钢轨与桥梁间连接参数的影响。  相似文献   

17.
In this paper, a magnetomechanical coupling constitutive relation of the giant magnetostrictive material was investigated experimentally and theoretically. A grain-oriented magnetostrictive rod of iron and rare earth was tested under a combined magnetomechanical loading. Two types of experimental curves were obtained, i.e., the magnetostrictive curve of the extensional strain vs the magnetic field, and the curve of the magnetic polarization intensity vs the pre-stress. A new theoretical constitutive model, based on the density of domain switching, is developed. Comparison of the theoretical predictions with the experimental results indicates that this model can capture the main characteristics of the magnetoelastic coupling deformation of a giant magnetostrictive rod. The project supported by the National Natural Science Foundation of China (10025209, 10132010, 10102007)  相似文献   

18.
Hamiltonian formulation of nonlinear water waves in a two-fluid system   总被引:4,自引:2,他引:2  
IntroductionThegeometrizationofmechanicsisatendencyofthedevelopmentofcontinuummechanicsanddrawsextensiveatentionofresearchers...  相似文献   

19.
针对混凝土泵车的工作原理和结构特点,结合现有输送管流固耦合理论的研究成果,提出了基础有平动位移的悬臂输送管理论模型,并通过多体运动学理论和Hamilton变分原理,建立该模型的运动微分方程.采用有限单元理论建立混凝土泵车臂架系统的流固耦合运动微分方程.选取混凝土流速U=2.265m/s和不考虑混凝土流动进行对比仿真分析后发现:两者臂架振动响应均值相同;但稳态时两者振动幅值比值最大,接近2;而改变Rayleigh阻尼系数则对臂架振动响应影响不大,这说明混凝土的流动增加臂架振动阻尼效应显著.结合Matlab仿真分析与Ansys三维有限元模型,模拟计算出了臂架结构动应力,对比测点应力测试结果与模拟计算结果,两者应力历程变化趋势相似,应力值较接近,最大差异小于20MPa,验证了仿真模型的合理性.  相似文献   

20.
In this paper a beam element that accounts for inelastic axial-flexure–shear coupling is presented. The mathematical model is derived from a three-field variational form. The finite element approximation for the beam uses shape functions for section forces that satisfy equilibrium and discontinuous section deformations along the beam. No approximation for the beam displacement field is necessary in the formulation. The coupling of the section forces is achieved through the numerical integration of an inelastic multi-axial material model over the cross-section. The proposed element is free from shear-locking. Examples confirm the accuracy and numerical robustness of the proposed element and showcase the interaction between axial force, shear, and bending moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号