首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.  相似文献   

2.
The flow of an incompressible couple stress fluid in an annulus with local constriction at the outer wall is considered. This configuration is intended as a simple model for studying blood flow in a stenosed artery when a catheter is inserted into it. The effects couple stress fluid parameters α and σ, height of the constriction (ε), and ratio of radii (k) on the impedance and wall shear stresses are studied graphically. Graphical results show that the resistance to the flow as well as the wall shear stress increases as the ratio of the radii increases and decreases as the couple stress fluid parameters increases.  相似文献   

3.
The flow and heat transfer characteristics of Oberbeck convection of a couple stress fluid in a vertical porous stratum is investigated. The perturbation method of solution is obtained in terms of buoyancy parameter N valid for small values of N. This limitation is relaxed through numerical solutions using the finite difference technique with an error of 0.1×10-7. The effect of increase in the values of temperature difference between the plates, permeability parameter and couple stress parameter on velocity, temperature, mass flow rate, skin friction and rate of heat transfer are reported. A new achievement is explored to analyse the flow for strong, weak and comparable porosity with the couple stress parameter. It is noted that both the porous parameter and the couple stress parameter suppress the flow. Higher-temperature difference is required to achieve the mass flow rate equivalent to that of viscous flow.  相似文献   

4.
Poroelasticity is a theory that quantifies the time-dependent mechanical behavior of a fluid-saturated porous medium induced by the interaction between matrix deformation and interstitial fluid flow. Based on this theory, we present an analytical solution of interstitial fluid pressure in poroelastic materials under uniaxial cyclic loading. The solution contains transient and steady-state responses. Both responses depend on two dimensionless parameters: the dimensionless frequency Ω that stands for the ratio of the characteristic time of the fluid pressure relaxation to that of applied forces, and the dimensionless stress coefficient H governing the solid-fluid coupling behavior in poroelastic materials. When the phase shift between the applied cyclic loading and the corresponding fluid pressure evolution in steady-state is pronounced, the transient response is comparable in magnitude to the steady-state one and an increase in the rate of change of fluid pressure is observed immediately after loading. The transient response of fluid pressure may have a significant effect on the mechanical behavior of poroelastic materials in various fields.  相似文献   

5.
Rigid–plastic crystal plasticity with the rate-sensitive constitutive behavior of a slip system has been formulated within the framework of a two-dimensional finite element method to predict the grain-by-grain deformation of single- and polycrystalline FCC metals. For that purpose, individual grains are represented by several numbers of finite elements to describe the sub-grain deformation behavior, and couple stress has been introduced into the equilibrium equation to be able to describe the size effect as well as to prevent mesh-dependent predictions. A modified virtual work-rate principle with an approximate interface constraint has been suggested to use a C 0-continuous element in the finite element implementation, and the couple stress work-rate has been formulated on the basis of an assumed constitutive behavior. Simulated plane-strain compressions of a single crystal cube show that the shearing and the deformation load are closely related to the imbedded lattice orientation of the crystal grain, and that the sub-grain deformation and the load magnitude can be controlled by the couple stress hardening. It is also confirmed that almost the same predictions are obtained for different mesh systems by considering the couple stress hardening. Simulated plane-strain compressions of a bi-crystal show considerably curved grain-by-grain surface profiles after large reduction for several combinations of the imbedded lattice orientation. The high couple stress hardening predicted around grain boundaries is supposed to be related to the grain size effect. It is also supposed that consideration of couple stress is necessary to predict the sub-grain or the grain-by-grain deformation, and the couple stress hardening may be used to describe the state of microstructures in grain.  相似文献   

6.
An analytical study of the entropy generation rate and heat transfer in a flow of immiscible couple stress fluids between two horizontal parallel plates under a constant pressure gradient is performed. Both plates are kept at different and constant temperatures higher than that of the fluid. The Stokes couple stress flow model is employed. The classical no-slip condition is prescribed at the plates, and continuity of the velocity, rotation, couple stress, shear stress, temperature, and heat flux is imposed at the interfaces. The velocity and temperature distributions are found analytically, and they are used to compute the entropy generation number and Bejan number. The effects of the couple stress parameter and Reynolds number on the velocity, temperature, entropy generation number, and Bejan number are investigated. It is observed that the friction near the plates in couple stress fluids decreases as the couple stress increases.  相似文献   

7.
A theoretical study of the velocity and thermal boundary-layer growth resulting from an impulsively started Falkner–Skan flow is presented in this paper. The forced convection, thermal boundary-layer is produced by the sudden increase of the surface temperature as it is set into motion. Analytical solutions for the simultaneous development of the thermal and momentum boundary layers are obtained for both small (initial, unsteady flow) and large (steady-state flow) times. These solutions are then matched numerically using a very efficient finite-difference scheme. Some considerable attention to the steady-state flow solution (large time) is also given in this paper. Results of the calculations are presented for a range of values of the Falkner–Skan exponent m and the Prandtl number Pr.  相似文献   

8.
The steady-state and transient shear flow dynamics of polymer drops in a microchannel are investigated using the dissipative particle dynamics (DPD) method. The polymer drop is made up of 10% DPD solvent particles and 90% finite extensible non-linear elastic (FENE) bead spring chains, with each chain consisting of 16 beads. The channel’s upper and lower walls are made up of three layers of DPD particles, respectively, perpendicular to Z-axis, and moving in opposite directions to generate the shear flow field. Periodic boundary conditions are implemented in the X and Y directions. With FENE chains, shear thinning and normal stress difference effects are observed. The “colour” method is employed to model immiscible fluids according to Rothman–Keller method; the χ-parameters in Flory–Huggins-type models are also analysed accordingly. The interfacial tension is computed using the Irving–Kirkwood equation. For polymer drops in a steady-state shear field, the relationship between the deformation parameter (Ddef) and the capillary number (Ca) can be delineated into a linear and nonlinear regime, in qualitative agreement with experimental results of Guido et al. [J. Rheol. 42 (2) (1998) 395]. In the present study, Ca<0.22, in the linear regime. As the shear rate increases further, the drop elongates; a sufficiently deformed drop will break up; and a possible coalescence may occur for two neighbouring drops. Dynamical equilibrium between break-up and coalescence results in a steady-state average droplet-size distribution. In a shear reversal flow, an elongated and oriented polymer drop retracts towards a roughly spherical shape, with a decrease in the first normal stress difference. The polymer drop is found to undergo a tumbling mode at high Schmidt numbers. A stress analysis shows that the stress response is different from that of a suspension of solid spheres. An overshoot in the strain is observed for the polymer drop under extension due to the memory of the FENE chains.  相似文献   

9.
In this article couple stress fluid have been considered for the peristaltic flow of chyme in intestine. Problem under consideration have been formulated assuming that two non-periodic sinusoidal wave of different wavelength propagate with same speed c along the outer wall of the tube. Governing equations have been simplified under the assumptions of long wavelength and low Reynolds number approximation (such assumption are consistent that Re (Reynold number) is very small and long wavelength approximation also exists in the small intestine). Exact solutions have been evaluated for velocity and pressure rise. Physical behaviour of different parameter of couple stress fluid have been presented graphically for velocity, pressure rise, pressure gradient and frictional forces. The stream lines are also made against different parameters.  相似文献   

10.
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The non-linear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0<t*<1 and reach the steady-state values for t*≥4.  相似文献   

11.
12.
This paper examines the Stokes' flow due to an axially symmetric body rotating about its axis of symmetry in a micropolar fluid which sustains anti-symmetric stress and couple stress. General solutions are obtained to the coupled differential equations governing such a flow and the special case of a sphere is deduced. Then, with the aid of a concentrated couple, a simple formula for the couple experienced by a body is derived in terms of the angular velocity of the flow field.  相似文献   

13.
Elementary matrix multiplications and inversions lead to Galerkin type representations for the steady-state vibration equations of linear classical elasticity, thermoclasticity, Mindlin's couple stress and Eringen's micropolar theories of elasticity. The use of representations and the equations satisfied by potentials is further illustrated by obtaining singular solutions. Some of the results agree with known solutions.  相似文献   

14.
In most of conventional porous media the flow of gas is basically controlled by the permeability and the contribution of gas flow due to gas diffusion is ignored. The diffusion effect may have significant impact on gas flow behavior, especially in low permeability porous media. In this study, a dual mechanism based on Darcy flow as well as diffusion is presented for the gas flow in homogeneous porous media. Then, a novel form of pseudo pressure function was defined. This study presents a set of novel analytical solutions developed for analyzing steady-state and transient gas flow through porous media including effective diffusion. The analytical solutions are obtained using the real gas pseudo pressure function that incorporates the effective diffusion. Furthermore, the conventional assumption was used for linearizing the gas flow equation. As application examples, the new analytical solutions have been used to design new laboratory and field testing method to determine the porous media parameters. The proposed laboratory analysis method is also used to analyze data from steady-state flow tests of three core plugs. Then, permeability (k) and effective diffusion coefficient (D e) was determined; however, the new method allows one to analyze data from both transient and steady-state tests in various flow geometries.  相似文献   

15.
The steady-state, similarity solutions of the flow of an upper-convected Maxwell fluid through a tube with a porous wall are constructed by asymptotic and numerical analyses as functions of the direction of flow through the tube, the amount of elasticity in the fluid, as measured by the Deborah number De, and the degree of fluid slip along the tube wall. Fluid slip is assumed to be proportional to the local shear stress and is measured by a slip parameter β that ranges between no-slip (β = 1) and perfect slip (β = 0). The most interesting results are for fluid injection into the tube. For β = 1, the family of flows emanating from the Newtonian limit (De = 0) has a limit point where it turns back to lower values of De. These solutions become asymptotic to De = 0) and develop an O(De) boundary layer near the tube wall with singularly high stresses matched to homogeneous elongational flow in the core. This solution structure persists for all nonzero values of the slip parameter. For β ≠ 1, a family of exact solutions is found with extensional kinematics, but nonzero shear stress convected into the tube through the wall. These flows differ for low De from the Newtonian asymptote only by the absence of the boundary layer at the tube wall. Finite difference calculations evolve smoothly between the Newtonian-like and extensional solutions because of approximation error due to under-resolution of the boundary layer. The radial gradient of the axial normal stress of the extensional flow is infinite at the centerline of the tube for De > 1; this singularity causes failure of the finite difference approximations for these Deborah numbers unless the variables are rescaled to take the asymptotic behavior into account.  相似文献   

16.
An extensive numerical study of the mechanics of the “wedge-peel test” is performed in order to analyze the mode I steady state debonding of a sandwich structure made of two thin plastically deforming metallic plates bonded with an adhesive. The constitutive response of the metallic plates is modeled by J2 flow theory, and the behavior of the adhesive layer is represented with a cohesive zone model characterized by a maximum separation stress and the fracture energy. A steady-state finite element code accounting for finite rotation has been developed for the analysis of this problem. Calculations performed with the steady-state formulation are shown to be much faster than simulations involving both crack initiation and propagation within a standard, non-steady-state code. The goal of this study is to relate the measurable parameters of the test to the corresponding fracture process zone characteristics for a representative range of adherent properties and test conditions. An improved beam bending model for the energy release rate is assessed by comparison with the numerical results. Two procedures are proposed for identifying the cohesive zone parameters from experimental measurements.  相似文献   

17.
Siva  T.  Jangili  S.  Kumbhakar  B. 《应用数学和力学(英文版)》2021,42(7):1047-1062
The heat transfer of the combined magnetohydrodynamic(MHD) and electroosmotic flow(EOF) of non-Newtonian fluid in a rotating microchannel is analyzed. A couple stress fluid model is scrutinized to simulate the rheological characteristics of the fluid. The exact solution for the energy transport equation is achieved. Subsequently,this solution is utilized to obtain the flow velocity and volume flow rates within the flow domain under appropriate boundary conditions. The obtained analytical solution results are compared with the previous data in the literature, and good agreement is obtained.A detailed parametric study of the effects of several factors, e.g., the rotational Reynolds number, the Joule heating parameter, the couple stress parameter, the Hartmann number, and the buoyancy parameter, on the flow velocities and temperature is explored. It is unveiled that the elevation in a couple stress parameter enhances the EOF velocity in the axial direction.  相似文献   

18.
We report on the use of a numerical method to solve the (inertia-less) squeeze-film flow problem for a viscoelastic fluid. The method is based on a Boundary Element formulation and relies on a time-marching scheme. The viscoelastic fluid is modelled by a constitutive law that allows for a shear stress overshoot mechanism in a suddenly started shear flow. The results show convincingly that the load enhancement sometimes observed experimentally is due to stress overshoot. A simple explanation for the enhancement is suggested; the stress overshoot appears quickly and takes a long time to die away, so that steady-state viscous behaviour is not very relevant.  相似文献   

19.
The steady-state, two-dimensional creeping flow of an Upper-Convected Maxwell fluid between two eccentric cylinders, with the inner one rotating, is computed using a spectral/finite-element method (SFEM). The SFEM is designed to alleviate the numerical oscillations caused by excessive dispersion error in previous finite-element calculations and to resolve the stress boundary-layers that exist for high elasticity, as measured by the Deborah number De. Calculations for cylinders with low eccentricity (ϵ = 0.1) converged to oscillation-free solutions for De ≈ 90, extending the domain of convergence over traditional finite-element methods by a factor of thirty. The results are confirmed by extensive refinement of the discretization. At high De, steep radial boundary layers form in the stress, which match closely with those predicted by asymptotic analysis. Calculations at higher eccentricity require extreme refinement of the discretization to resolve the variations in the stress field in both the radial and azimuthal directions associated with the existence of the recirculation region. Results for ϵ = 0.4 show that the recirculation region present for the Newtonian fluid (De = 0) shrinks and then grows with increasing De. Calculations for ϵ = 0.4 are terminated by a limit point near DeL ≈ 7.24 for the finest discretization used. The Fourier series approximations are not convergent for this mesh, so the limit point must be considered to be an artifact of the discretization.  相似文献   

20.
An implicit finite volume solver is developed for the steady-state solution of generalised Newtonian fluids on unstructured meshes in 2D. The pseudo-compressibility technique is employed to couple the continuity and momentum equations by transforming the governing equations into a hyperbolic system. A second-order accurate spatial discretisation is provided by performing a least-squares gradient reconstruction within each control volume of unstructured meshes. A central flux function is used for the convective terms and a solution jump term is added to the averaged component for the viscous terms. Global implicit time-stepping using successive evolution–relaxation is utilised to accelerate the convergence to steady-state solutions. The performance of our flow solver is examined for power-law and Carreau–Yasuda non-Newtonian fluids in different geometries. The effects of model parameters and Reynolds number are studied on the convergence rate and flow features. Our results verify second-order accuracy of the discretisation and also fast and efficient convergence to the steady-state solution for a wide range of flow variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号