首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sensitive detection of ammonia in parts per billion by volume is described. The system based on photoacoustic spectroscopy (PAS) consists of distributed feedback laser diode emitting near 1,531.7 nm and a compact PA cell at double-pass configuration. In order to optimize the signal background ratio of the system, two types of modulations were tested, amplitude and wavelength modulations (WM). Using a digital lock-in amplifier, the 1f and 2f detection in WM could be investigated. A detection limit of 470 parts per million by volume could be achieved at WM-2f. In the sense of quantifing the adsorption–desorption process, the response time of the system and detection accuracy was performed in different flows. Response times between 10 and 49 s, depending on the flow rate, were obtained which enables the PA system to measure low concentrations of ammonia with high accuracy in real time.  相似文献   

2.
Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers   总被引:1,自引:0,他引:1  
We present photoacoustic (PA) spectroscopy measurements of carbon dioxide, methanol, and ammonia. The light source for the excitation was a single-mode quantum cascade distributed-feedback laser, which was operated in pulsed mode at moderate duty cycle and slightly below room temperature. Temperature tuning resulted in a typical wavelength range of 3cm(-1)at a linewidth of 0.2cm(-1). The setup was based on a Herriott multipass arrangement around the PA cell; the cell was equipped with a radial 16-microphone array to increase sensitivity. Despite the relatively small average laser power, the ammonia detection limit was 300 parts in 10(9)by volume.  相似文献   

3.
Resonant photoacoustic (PA) detection is widely used in several atmospheric and industrial monitoring applications due to its high sensitivity and short response time. However, unexpected changes in the acoustic resonance frequency of a PA cell caused by sudden changes either in the composition or the temperature of the sample gas can largely diminish the precision of the PA measurement. This paper describes a novel method for tracking such changes in resonance frequency. Besides improving the measurement precision, the introduced CHIrped modulation for Resonance Profiling (CHIRP) method has the additional advantage of maintaining the fast response time of the PA system without using any additional hardware components. The minimum detectable water vapor concentration, depending on the modulation bandwidth of the CHIRP, was found to be 0.3–0.5 ppm in nitrogen buffer gas. The applicability of the CHIRP method was demonstrated in PA measurements in a buffer gas with varying composition, which are typical in, e.g., industrial monitoring applications.  相似文献   

4.
In this paper, we report the sono-synthesis of reduced graphene oxide (rGO) using polyethyleneimine (PEI), and its performance for ammonia vapour detection at room temperature. Graphene oxide (GO) and reduced graphene oxide (rGO) were prepared by sonication method by using low-frequency ultrasound under ambient condition and films were deposited by Doctor Blade method. The rGO, which has vapour accessible structure showed a good sensing response with a minimum detection limit of 1 ppm and the detection range from 1 ppm to 100 ppm. The sensing response was found to be 2% at 1 ppm and 34% at 100 ppm of ammonia and the developed sensor operated at room temperature. The sensor displays a response time of 6 s and a recovery time of 45 s towards 100 ppm of ammonia vapour. The source for the highly sensitive, selective and stable detection of ammonia with negligible interference from other vapours is discussed and reported. We believe reduced graphene oxide (rGO) could potentially be used to manufacture a new generation of low-power portable ammonia sensors.  相似文献   

5.
A cladding modified fiber optic sensor coated with nanocrystalline ZnO is proposed for ammonia gas detection. As-prepared and annealed zinc oxide (500 and 1200 °C) samples are used as the gas sensing media. The spectral characteristics of the fiber optic gas sensor are studied for various concentrations of ammonia (0–500 ppm). The sensor exhibits linear variation in the spectral peak intensity with the ammonia concentration. The characteristics of the sensor when exposed to ethanol and methanol gases are also studied for gas selectivity. The time response characteristics of the sensor are reported.  相似文献   

6.
A photoacoustic (PA) system for monitoring gaseous air pollutants absorbing in the CO-laser range is presented. The characteristics of the CO laser and the interference caused by water-vapor absorption demand a special design of the PA cell and experimental setup. The optimum cell design was found by numerical simulation of the acoustic properties of various cell geometries. For this purpose a model using infinitesimal analogue acoustic impedances was developed. Based on a matrix formalism for fourterminals, a computer program was applied that permits the calculation of the frequency response of the PA signal amplitude at any position within a one-dimensional PA cell. Excellent agreement with experimental data is obtained. As a result, a new design for an acoustically resonant spectrophone with improved properties is presented. The response of the cell with aQ-factor of 52, operated at 555 Hz, is 2000 Pa cm/W.  相似文献   

7.
The preparation of pH-sensitive nanospheres by emulsion polymerization for the detection of trace levels of ammonia is described. A fluorescent, polymerizable xanthene dye was copolymerized with styrene, crosslinkers and further copolymers aimed at enhancing the sensitivity to obtain materials for sensing of ammonia. A half-seeded technique was used to obtain stable emulsions of the monomers which were cured to obtain nanospheres with covalently attached active components. The nanospheres were embedded in a silicon matrix and the sensor films obtained were investigated regarding their response to ammonia at concentrations between 25 and 1,000 ppb. Sensors containing polystyrene nanospheres crosslinked with divinylbenzene showed the best performance in ammonia measurements exhibiting detection limits (LODs) of less than 25 ppb ammonia.  相似文献   

8.
A photoacoustic (PA) spectrometer based on a near-IR tunable fiber laser is developed and used for breath ammonia analysis. We successfully measured the breath ammonia level variation of six patients with end-stage renal disease while they were undergoing hemodialysis in the hospital. The measurement results showed that the initial concentration level of the breath ammonia were from 1600 to 2200 ppb before dialysis treatment, the levels decreased to 200–600 ppb in the end stage of dialysis, which close to the levels of healthy persons. Further improvement and applications of this PA spectrometer are discussed.  相似文献   

9.
A detailed study on the pressure dependent sensitivity of a wavelength modulated diode laser based photoacoustic (PA) water vapor detection system is presented. It is shown that the pressure dependence of sensitivity is primarily determined by the pressure dependence of the microphone’s sensitivity and the quality factor of the excited acoustic resonance of the PA cell. Effort was made to improve the system’s sensitivity for the whole pressure range (from 200 mbar to 1000 mbar) of operation typical in atmospheric research, while maintaining the inherent fast response time of the PA system. For this purpose active control of modulation based on the continuous adjustment of the unmodulated and modulated parts of the laser current in accordance with the actual gas pressure was introduced, with which a minimum detectable water vapor concentration (3σ) of 300 ppb at 200 mbar and 188 ppb at 1000 mbar was achieved. The system’s sensitivity improves slightly at the lower end of the pressure range and increases by a factor of more than two at the higher end, when compared with that of our PA system currently on board of a commercial aircraft within the framework of an atmospheric research project (CARIBIC—Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). Test measurements proved the feasibility of the implementation of the developed modulation method within the framework of the CARIBIC project.  相似文献   

10.
The Helmholtz resonant photoacoustic (PA) cell is a very convenient design of PA system for air pollution monitoring based on infrared molecular absorption. A simple differential Helmholtz resonator designed for flow measurements is presented in this work. The investigation of the PA systems characteristics based on this design includes experimental study of the responsitivity both of the separate photoacoustic cell and the whole photoacoustic system applied to trace gases detection. The experimental observations are compared to the theoretical predictions. A simple arrangement to enhance the photoacoustic signal of the whole system by a factor of 2 is presented.  相似文献   

11.
Photoacoustic spectroscopy using quantum-cascade lasers   总被引:1,自引:0,他引:1  
Photoacoustic spectra of ammonia and water vapor were recorded by use of a continuous-wave quantum-cascade distributed-feedback (QC-DFB) laser at 8.5 mum with a 16-mW power output. The gases were flowed through a cell that was resonant at 1.6 kHz, and the QC-DFB source was temperature tuned over 35 nm for generation of spectra or was temperature stabilized on an absorption feature peak to permit real-time concentration measurements. A detection limit of 100 parts in 10(9) by volume ammonia at standard temperature and pressure was obtained for a 1-Hz bandwidth in a measurement time of 10 min.  相似文献   

12.
A detailed study on the temperature dependent sensitivity of a wavelength modulated diode laser based photoacoustic (PA) water vapor detection system is presented. The temperature dependence of the resonance frequency, the Q-factor of the resonator, the microphone sensitivity and the response time is investigated. It is shown that the overall temperature dependent sensitivity of the system is primarily determined by the temperature dependence of the microphone sensitivity. Effort was made to improve the system’s accuracy for measurements under varying ambient temperature typical in airborne applications, while maintaining the fast response time of the PA system. For this purpose a wavelength-stabilization method is introduced, with which the wavelength instability of the laser can be decreased to be as low as 0.008 nm. Test measurements proved the feasibility of the implementation of the wavelength locking method within the framework of the CARIBIC (civil aircraft for the regular investigation of the atmosphere based on an instrument container) project.  相似文献   

13.
Sun ZH  Zhou W  Xu ZT  Ye HB  Yang CY  Lin JF  Hu SB  Yang YZ  Li C  Cao WX 《光谱学与光谱分析》2011,31(11):2881-2885
由于Teflon AF具有气体渗透性结构、疏水性、化学惰性、比水低的折射率等特点,因此Teflon AF液芯波导在吸收、荧光、拉曼光谱分析、气体传感器等诸多领域得到了广泛的应用.本文将剖析Teflon AF液芯波导的特性,分析Teflon AF液芯波导的应用研究进展,展望Teflon AF液芯波导的应用研究前景.  相似文献   

14.
程刚  曹渊  刘锟  曹亚南  陈家金  高晓明 《物理学报》2019,68(7):74202-074202
利用光声光谱技术进行痕量气体的检测具有独特的优势,光声池是系统装置中最为重要的核心部件,它决定着整机性能的优劣.以一圆柱形共振型光声池为研究对象,基于声学与吸收光谱学的基本理论,建立了光声池声场激发的数学模型;利用数值模拟方法对光声池空腔结构进行了声学模态仿真,获得了前8阶声学模态值以及声压可视化振型;在考虑热黏性声学损耗的作用下,对光声池进行了热-声耦合多物理场仿真计算;将仿真结果与解析计算和实验结果进行对比,明确了利用数值模拟方法来计算光声池有关指标的可靠性与可行性;针对光声池的优化问题,提出了一种将响应面代理模型与遗传算法相结合的优化算法,在将原光声池中的谐振腔两端形貌更改为喇叭口形的情况下,通过优化算法获得了以光声池品质因数Q及池常数C_(cell)为最大值寻优的Pareto最优解集;选取一组解进行考察,结果表明,代理模型预测值与数值模拟值指标最大误差仅为1.3%,优化后的新型光声池Q较之前增长了48.9%, C_(cell)增长了34.4%.研究方法可为光声光谱中光声池的优化设计提供参考借鉴.  相似文献   

15.
Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers   总被引:1,自引:0,他引:1  
Y Cao  W Jin  LH Ho  Z Liu 《Optics letters》2012,37(2):214-216
We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.  相似文献   

16.
A compact open-path optical ammonia detector is developed. A tunable external-cavity diode laser operating at 1.5 μm is used to probe absorptions of ammonia via the cavity-enhanced absorption (CEA) technique. The detector is tested in a climate chamber. The sensitivity and linearity of this system are studied for ammonia and water at atmospheric pressure. A cluster of closely spaced rovibrational overtone and combination band transitions, observed as one broad absorption feature, is used for the detection of ammonia. On these molecular transitions a detection limit of 100 ppb (1 s) is determined. The ammonia measurements are calibrated independently with a chemiluminescence monitor. Compared to other optical open-path detection methods in the 1–2 μm region, the present result shows an improved sensitivity for contactless ammonia detection by over one order of magnitude. Using the same set-up, a detection limit of 100 ppm (1 s) is determined for the detection of water at atmospheric pressure. Received: 19 January 2000 / Revised version: 6 March 2000 / Published online: 7 June 2000  相似文献   

17.
A single p-type crystal of the mineral, pyrite (FeS2) was characterized photoacoustically using the transmission detection configuration. Photoacoustic (PA) amplitude and phase spectra were measured using a specially constructed PA cell. The PA signals of different sample thicknesses were measured using an experimental setup with a semiconductor red laser (80 mW) as the optical source. The obtained amplitude and phase spectra for different thicknesses were numerically analyzed enabling determination of thermal diffusivity, mobility of minority free carriers and other parameters characteristic for this material.  相似文献   

18.
Most photoacoustic (PA) work assumes a point-like detection of generated pressure waves; this assumption results in important differences between predicted and experimental signals, as shown in this paper. We used the geometry of a real sensor in the theoretical signal generation through the discretization of the sensing surface, considering each element as a point-like sensor. We modeled the interaction between the wavefront and the real sensor, starting from a well-known PA pressure relation for a point-like source and punctual detection. We obtained the electrical response of the real sensor experimentally and modeled it as a summation of Gaussian functions. The impulse response was convolved with the total PA pressure to obtain the theoretical PA signal. We analyzed the dependence of the source-sensor distance on the discretization size. Then the predicted signal and experimental data were compared for two different frequency response transducers. We found differences in shape and temporal width of simulated PA signals for point-like-source/punctual-detection model and for point-like-source/finite-sensor model.  相似文献   

19.
空心光波导(hollow waveguide, HWG)可以同时传输红外激光和目标气体,是激光气体传感器中的新型气体池,具有体积小、响应速度快的特点。基于可调谐二极管激光吸收光谱(TDLAS)技术,以空心光波导为气体池,研制了氨气激光传感器。采用波长调制光谱(wavelength modulation spectroscopy, WMS)技术,同时解调气体吸收的一次谐波(1f)和二次谐波(2f)信号,通过1f归一化2f信号实现免校准(calibration-free)测量。利用标准气体进行验证实验,结果表明,传感器的响应线性度R2为0.999 8,响应时间24 s。Allan方差结果表明积分时间18 s时检测限为26 ppbv。该传感器可以用于空气中痕量氨气的快速、高灵敏检测。  相似文献   

20.
针对多组分气体测量精度低、交叉影响等问题,建立了一种高精度多气体网络式在线检测系统。系统中采用窄线宽激光器作为光源,设计了新型长光程气室,通过单一高频三角信号调制激光光谱,利用谐波检测技术和光学时分、空分复用技术相结合,实现了三种气体(CO,CH4,C2H2)的同时多点高精度在线测量。实验结果表明,多气体浓度测量最大相对误差小于4%,每种气体响应时间均小于15 s。该系统多气体检测精度高、响应时间快,非常适合用于变压器绝缘油中多组分气体实时在线检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号