首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work in our laboratories has demonstrated the effectiveness of peracetic acid for improving enzymatic digestibility of lignocellulosic materials. The use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increased carbohydrate hydrolysis yields in a synergistic as opposed to additive manner. Deacetylation of xylan is easily achieved using dilute alkali solutions under mild conditions. In this article, we evaluate the effectiveness of peracetic acid combined with an alkaline pre-pretreatment through simulataneous saccharification and cofermentation (SSCF) of pretreated hybrid poplar wood and sugar can ebagasse. Respective ethanol yields of 92.8 and 91.9% of theoretical are achieved using 6% NaOH/15% peracetic acid-pretreated substrates and recombinant Zymomonas mobilis CP4/p ZB5. Reduction of acetyl groups of the lignocellulosic materials is demonstrated following alkaline pre-pretreatments. Such processing may be helpful in reducing peracetic acid requirements. The influence of deacetylation is more significant in combined pretreatments using lower peracetic acid loadings.  相似文献   

2.
Applied Biochemistry and Biotechnology - An integrated bioreactor-extractor was investigated for applicability in simultaneous saccharification and extractive fermentation (SSEF), and production of...  相似文献   

3.
A series of correlations was made between the performance of 15 wood species in simultaneous saccharification and fermentation (SSF) and their respective chemical compositions. A compelling inverse trend (p < 0.001) was demonstrated between the percent conversion of glucan to ethanol during SSF and the Klason lignin content of the wood samples before dilute acid pretreatment. No significant relationships were found between the glucan, xylan, and ash compositions of the native wood samples and ethanol yield. This observation is unique and provides a convenient predictor of biomass conversion efficiency.  相似文献   

4.
Four promising woody crops (Populusmaximowiczii x nigra (NE388), P.trichocarpa x deltoides (Nll), P.tremuloides, and SweetgumLiquidambar styraciflua) were pretreated by dilute sulfuric acid and evaluated in the simultaneous saccharification and fermentation (SSF) process for ethanol production. The yeastSaccharomyces cerevisiae was used in the fermentations alone, and in mixed cultures with β -glucosidase producingBrettanomyces dausenii. Commercial Genencor 150L cellulase enyme was either employed alone or supplemented with β- glucosidase. All SSFs were run at 37 …C for 8 d and compared to saccharifications at 45…C under the same enzyme loadings.S. cerevisiae alone achieved the highest ethanol yields and rates of hydrolysis at the higher enzyme loadings, whereas the mixed culture performed better at the lower enzyme loadings without β -glucosidase supplementation. The best overall rates of fermentation (3 d) and final theoretical ethanol yields (86–90%) were achieved with P.maximowiczii x nigra (NE388) and SweetgumLiquidambar styraciflua, followed by P.tremuloides and P.trichocarpa xdeltoides (N1l) with slightly slower rates and lower yields. Although there were some differences in SSF performance, all these pretreated woody crops show promise as substrates for ethanol production.  相似文献   

5.

Previous shake flask and stirred tank evaluations of temperature tolerant (37–43°C) yeasts in simultaneous saccharification and fermentation (SSF) on Sigmacell-50 cellulose substrates to ethanol have identified several good microorganisms for further SSF studies (27). Of these, the glucose fermenting yeastCandida acidothermophilum, C. brassicae, Saccharomyces cerevisiae, S. uvarum, and a mixed culture of the cellobiose fermenting yeastBrettanomyces clausenii withS. cerevisiae as a control were chosen for shake flask SSF screening experiments with pretreated wheat straw. This study indicates that theSaccharomyces strainscerevisiae anduvarum, give very good performance at high cellulase loadings or when supplemented with Novo-188 β-glucosidase. In fact, with the higher enzyme loadings these yeast will give complete conversion of cellulose to ethanol. Yet at the lower, more economical enzyme loadings, the mixed culture ofBrettanomyces clausenii andS. cerevisiae performs better than any single yeast.

  相似文献   

6.
Applied Biochemistry and Biotechnology - IOGEN Corporation of Ottawa, Canada, has recently built a 40t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. It has...  相似文献   

7.
Ethanol production was studied in simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce at 42°C, using a thermotolerant yeast. Three yeast strains of Kluyveromyces marxianus were compared in test fermentations. SSF experiments were performed with the best of these on 5% (w/w) of substrate at a cellulase loading of 37 filter paper units/g of cellulose, and a β-glucosidase loading of 38 IU/gof cellulose. The detoxification of the substrate and the lack of pH control in the experiments increased the final ethanol concentration. The final ethanol yield was 15% lower compared to SSF with Saccharomyces cerevisiae at 37°C, owing to the cessation of ethanol fermentation after the first 10 h.  相似文献   

8.
Wheat straw was pretreated with dilute (0.5%) sulfuric acid at 140°C for 1 h. Pretreated straw solids were washed with deionized water to neutrality and then stored frozen at –20°C. The approximate composition of the pretreated straw solids was 64% cellulose, 33% lignin, and 2% xylan. The cellulose in the pretreated wheat straw solids was converted to ethanol in batch simultaneous saccharification and fermentation experiments at 37°C using cellulase enzyme fromTrichoderma reesei (Genencor 150 L) with or without supplementation with β–glucosidase fromAspergillus niger (Novozyme 188) to produce glucose sugar and the yeastSaccharomyces cerevisiae to ferment the glucose into ethanol. The initial cellulose concentrations were adjusted to 7.5, 10, 12.5, 15, 17.5, and 20% (w/w). Since wheat straw particles do not form slurries at these concentrations and cannot be mixed with conventional impeller mixers used in laboratory fermenters, a simple rotary fermenter was designed and fabricated for these experiments. The results of the simultaneous saccharification and fermentation (SSF) experiments indicate that the cellulose in pretreated wheat straw can be efficiently fermented into ethanol for up to a 15% cellulose concentration (24.4% straw concentration).  相似文献   

9.
A hybrid neural model was developed for the alcoholic fermentation by Zymomonas mobilis. This model is composed by the mass-balance equations of the process and neural networks, which describe the kinetic rates. Strategies that combines scarce experimental data with approximate models of the process were used to generate new data for the training of the networks, minimizing the number of experiments required. The proposed hybrid neural methodology uses all the information avail able about the process to deal with the difficulties in the development of the model.  相似文献   

10.
This article outlines some of the factors influencing the choice of a suitable reactor for using immobilized biocatalysts. We have concentrated on biochemical engineering parameters of immobilized biocatalysts, which are important with respect to their application in industrial processes.  相似文献   

11.
In this work, the effect of the addition of different concentrations of Tween-80 and three different zeolite-like products on enzymatic hydrolysis, ethanol fermentation, and simultaneous saccharification and fermentation (SSF) process has been investigated. The ability of these products to enhance the effectiveness of the SSF process to ethanol of steam-exploded poplar biomass using the thermotolerant strainKluyveromyces marxianus EMS-26 has been tested. Tween-80 (0.4 g/L) increased enzymatic hydrolysis yield by 20% when compared to results obtained in hydrolysis in absence of the additive. Zeolite-like products (ZESEP-56 and ZECER-56) (2.5 g/L) improved rates of conversion and ethanol yields in the fermentation of liquid fraction recovered from steam-exploded poplar. The periods required for the completion of fermentation were approx 10 h in the presence of zeolite-like products and 24 h in the absence of additives. The probable mode of action is through lowered levels of inhibitory substances because of adsorption by the additive.  相似文献   

12.
The five-carbon sugard-xylose is a major component of hemicellulose and accounts for roughly one-third of the carbohydrate content of many lignocellulosic materials. The efficient fermentation of xylose-rich hemicellulose hydrolyzates (prehydrolyzates) represents an opportunity to improve significantly the economics of large-scale fuel ethanol production from lignocellulosic feedstocks. The National Renewable Energy Laboratory (NREL) is currently investigating a simultaneous saccharification and cofermentation (SSCF) process for ethanol production from biomass that uses a dilute-acid pretreatment and a metabolically engineered strain ofZymomonas mobilis that can coferment glucose and xylose. The objective of this study was to establish optimal conditions for cost-effective seed production that are compatible with the SSCF process design. Two-level and three-level full factorial experimental designs were employed to characterize efficiently the growth performance of recombinantZ. mobilis CP4:pZB5 as a function of nutrient level, pH, and acetic acid concentration using a synthetic hardwood hemicellulose hydrolyzate containing 4% (w/v) xylose and 0.8% (w/v) glucose. Fermentations were run batchwise and were pH-controlled at low levels of clarified corn steep liquor (cCSL, 1-2% v/v), which were used as the sole source of nutrients. For the purpose of assessing comparative fermentation performance, seed production was also carried out using a “benchmark” yeast extract-based laboratory medium. Analysis of variance (ANOVA) of experimental results was performed to determine the main effects and possible interactive effects of nutrient (cCSL) level, pH, and acetic acid concentration on the rate of xylose utilization and the extent of cell mass production. Results indicate that the concentration of acetic acid is the most significant limiting factor for the xylose utilization rate and the extent of cell mass production; nutrient level and pH exerted weaker, but statistically significant effects. At pH 6.0, in the absence of acetic acid, the final cell mass concentration was 1.4 g dry cell mass/L (g DCM/L), but decreased to 0.92 and 0.64 g DCM/L in the presence of 0.5 and 1.0% (w/v) acetic acid, respectively. At concentrations of acetic acid of 0.75 (w/v) or lower, fermentation was complete within 1.5 d. In contrast, in the presence of 1.0% (w/v) acetic acid, 25% of the xylose remained after 2 d. At a volumetric supplementation level of 1.5–2.0% (v/v), cCSL proved to be a cost-effective single-source nutritional adjunct that can support growth and fermentation performance at levels comparable to those achieved using the expensive yeast extract-based laboratory reference medium.  相似文献   

13.
The fermentation characteristics of two recombinant strains of Zymomonas mobilis, viz. CP4 (pZB5) and ZM4 (pZB5), capable of converting both glucose and xylose to ethanol, have been characterized in batch and continuous culture studies. The strain ZM4 (pZB5) was found to be capable of converting a mixture of 65 g/L glucose and 65 g/L xylose to 62 g/L ethanol in 48h with a yield of 0.46 g/g. Higher sugar concentrations resulted in incompletexylose utilization (80h) presumably owing to ethanol inhibition of xylose assimilation or metabolism. The fermentation results with ZM4 (pZB5) show a significant improvement over results published previously for recombinant yeasts and other bacteria capable of glucose and xylose utilization.  相似文献   

14.
Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.  相似文献   

15.
This research examined several enzymatic and microbial process for the conversion of waste cellulosic fibers into ethanol. The first was a one-stage process in which pulp fines were contacted with commercial enzyme solutions. The second process used sequential, multistage saccharification. The third used sequential enzyme addition in a countercurrent mode. Experiments compared the results with various feed stocks, different commercial enzymes, supplementation with β-glucosidase, and saccharification combined with fermentation. The highest saccharification (65%) from a 4% consistency pulp and the highest sugar concentration (5.4%) from an 8% consistency pulp were attained when 5 FPU/g plus 10 IU/g of β-glucosidase were used. Sequential addition of enzyme to the pulp in small aliquots produced a higher overall sugar yield/U enzyme than the addition of the same total amount of enzyme in a singledose. In the saccharification and fermentation experiments, we produced 2.12% ethanol from a 5.4% sugar solution. This represents 78% of the theoretical maximum. This yield could probably be increased through optimization of the fermentation step. Even when little saccharification occurred, the enzyme facilitated separation of water, fiber, and ash, so cellulase treatment could be an effective means for dewatering pulp sludges.  相似文献   

16.
Considerable efforts have been made to utilize agricultural and forest residues as biomass feedstock for the production of second-generation bioethanol as an alternative fuel. Fermentation utilizing strains of Zymomonas mobilis and the use of simultaneous saccharification and fermentation (SSF) process has been proposed. Statistical experimental design was used to optimize the conditions of SSF, evaluating solid content, enzymatic load, and cell concentration. The optimum conditions were found to be solid content (30%), enzymatic load (25 filter paper units/g), and cell concentration (4 g/L), resulting in a maximum ethanol concentration of 60 g/L and a volumetric productivity of 1.5 g L?1?h?1.  相似文献   

17.
Immobilization of Zymomonas mobilis by different methods was investigated. Experiments were performed order to choose the most appropriate support for the immobilization of the cells. The most advantageous option was to use permeabilized cells in the bore of microporous hollow fibers. Whereas the reaction rate was about 33 g of gluconate/ (g of protein·h) using hollow fibers, which is comparable to that observed by using free cells, the calcium alginate immobilized cells presented a reaction rate of 4 g of gluconate/ (g of protein·h). These results can be explained by the mass transfer resistance effect, which, indeed, was much lower in the case of hollow-fiber membranes than in the alginate gel beads. A loss of enzymatic activity during the reaction was observed in all experiments, which was attributed to the lactone produced as an intermediate of the reaction.  相似文献   

18.
The fermentation characteristics of a recombinant strain of Zymomonas mobilis ZM4(pZB5) capable of converting both glucose and xylose to ethanol have been further investigated. Previous studies have shown that the strain ZM4(pZB5) was capable of converting a mixture o 65 g/L of glucose and 65 g/L of xylose to 62 g/L of ethanol in 48 h with an overall yield of 0.46 g/g. Higher sugar concentrations (e.g., 75/75 g/L) resulted in incomplete xylose utilization (80 h). In the present study, further kinetic evaluations at high sugar levels are reported. Acetate inhibition studies and evaluation of temperature and pH effects indicated increased maximum specific uptake rates of glucose and xylose under stressed conditions with increased metabolic uncoupling. A high-productivity system was developed that involved a membrane bioreactor with cell recycling. At sugar concentrations of approx 50/50 g/L of glucose/xylose, an ethanol concentration of 50 g/L, an ethanol productivity of approx 5 g/(L·h), and a yield (Y p/s) of 0.50 g/g were achieved. Decreases in cell viability were found in this system after attainment of an initial steady state (40–60 h); a slow bleed of concentrated cells may be required to overcome this problem.  相似文献   

19.
The continuous cultivation of immobilized Saccharomyces cerevisiae CBS 8066 on dilute-acid hydrolysates of forest residuals was investigated. The yeast cells were immobilized in 2–4% Ca-alginate beads. The 2% beads were not stable. However, the 3 and 4% beads were stable for at least 3 wk when an extra resource of calcium ions was available in the medium. The continuous cultivation of a dilute-acid hydrolysate by the immobilized cells at dilution rates of 0.3, 0.5, and 0.6 h−1 resulted in 86, 83, and 79% sugar consumption, respectively, and an ethanol yield between 0.45 and 0.48 g/g. The hydrolysate was fermentable at a dilution rate of 0.1 h−1 in a free-cell system but washed out at a dilution rate of 0.2 h−1. The continuous cultivation of a more inhibiting hydrolysate was not successful by either free- or immobilized-cell systems even at a low dilution rate of 0.07 h−1. However, when the hydrolysate was overlimed, it was fermentable by the immobilized cells at a dilution rate of 0.2 h−1.  相似文献   

20.
Long-term (149 d) continuous fermentation was used to adapt a xylose-fermenting recombinant Zymomonas mobilis, strain 39676:pZB 4L, to conditioned (overlimed) dilute-acid yellow poplar hemicellulose hydrolyzate (“prehydrolyzate”). An “adapted” variant was isolated from a chemostat operating at a dilution rate of 0.03/h with a 50% (v/v) prehydrolyzate, corn steep liquor, and sugar-supplemented medium, at pH 5.75. The level of xylose and glucose in the medium was kept constant at 4% (w/v) and 0.8% (w/v), respectively. These sugar concentrations reflect the composition of the undiluted hardwood prehydrolyzate. The level of conditioned hardwood prehydrolyzate added to the medium was increased in 5% increments startingata level of 10%. At the upper level of 50% prehydrolyzate, the acetic-acid concentration was about 0.75% (w/v). The adapted variant exhibited improved xylose-fermentation performance in a pure-sugar, synthetic hardwood prehydrolyzate medium containing 4% xylose (w/v), 0.8% (w/v) glucose, and acetic acid in the range 0.4–1.0% (w/v). The ethanol yield was 0.48–0.50 g/g; equivalent to a sugar-to-ethanol conversion efficiency of 94–96% of theoretical maximum. The maximum growth yield and maintenance energy coefficients were 0.033 g dry cell mass (DCM)/g sugars and 0.41 g sugars/g DCM/h, respectively. The results confirm that long-term continuous adaptation is a useful technique for effecting strain improvement with respect to the fermentation of recalcitrant feedstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号