首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sc2SiO5 single crystals doped with 0.001 at.% of the 143Nd3+ ion were studied by continuous-wave and pulse electron paramagnetic resonance methods. The g-tensors and hyperfine structure tensors for two magnetically non-equivalent Nd ions were obtained. The spin–spin and spin–lattice relaxation times were measured at 9.82 GHz in the temperature range from 4 to 10 K. It was established that three relaxation processes contribute to the spin–lattice relaxation processes. There are one-phonon spin–phonon interaction, two-phonon Raman interaction and two-phonon Orbach–Aminov relaxation processes. It was established that spin–spin relaxation time is of the same magnitude for neodymium ion doped in Sc2SiO5 and in Y2SiO5.  相似文献   

2.
Pulsed electron–electron double resonance (PELDOR/DEER) at high frequencies can provide information on the relative orientation of paramagnetic centres or spin labels, if those are rigidly oriented in a host biomolecule and experiments are performed with sufficient orientation selectivity. We present the first comparative PELDOR study at 263 and 94 GHz on a model RNA system containing rigid nitroxides. We show that at 263 GHz still considerable modulation depth is observed and orientation selectivity is significant, particularly in g xg y plane of the nitroxides.  相似文献   

3.
The electron spin relaxation rates for the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) doped into polystyrene were studied by inversion recovery and electron spin echo at X-band and Q-band between 20 and 295 K. At low concentration (340 μM, 0.01 %), spin–lattice relaxation was dominated by the Raman process and a local mode. At high concentration (140 mM, 5 %), relaxation is orders of magnitude faster than at the lower concentration, and 1/T 1 is approximately linearly dependent on the temperature. Spin lattice relaxation rates are similar at X-band and Q-band. The temperature dependence of spin echo dephasing was faster at about 140 K than at higher or lower temperatures, which is attributed to a wagging motion of the phenyl groups.  相似文献   

4.
We report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g > 2 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900°C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin–lattice relaxation rate R 1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines.  相似文献   

5.
Initial and laser-irradiated poly(bis-alkylthioacetylene) (PATAC) samples were investigated by electron paramagnetic resonance (EPR) at X-band (9.6 GHz), Q-band (37 GHz), and D-band (140 GHz) in a wide temperature range. Two types of paramagnetic centers were proved to exist in laser-modified polymer, namely, localized and mobile polarons with the concentration ratio and susceptibility depending on the irradiation dose and temperature. Superslow torsion motion of the polymer chains was studied by the saturation transfer method at D-band EPR. Additional information on the polymer chain segment dynamics was obtained by the spin probe method at X-band EPR. Spin-spin and spin-lattice relaxation times were measured separately by the steady-state saturation method at D-band EPR. Intrachain and interchain spin diffusion coefficients and conductivity arising from the polaron dynamics were calculated. It was shown that the polaron dynamics in laser-modified polymer is affected by the spin-spin interaction. The interchain charge transfer is stimulated by torsion motion of the polymer chains, whereas the total conductivity of irradiated PATAC is determined mainly by the dynamic of diamagnetic charge carriers. Magnetic, relaxation and dynamics parameters of PATAC were also shown to change during polymer storage.  相似文献   

6.
Low-frequency (X-band) electron spin resonance (ESR) investigations on commercially available large-grained cubic boron nitride (cBN) superabrasive powders of various coloration, combined with high-frequency (W-band) ESR measurements on oriented submillimeter-size single crystallites selected from the same powder samples, resulted in a clear identification of several types of paramagnetic point defects. The resulting spin Hamiltonian parameters describing the ESR spectra observed in the 3–293 K temperature range and the photosensitivity of the paramagnetic defects observed in amber-colored cBN samples are reported. It is shown that the nature of the paramagnetic centers depends on the color of the investigated samples and that, in many cases, uncontrolled impurities seem to be involved in their structure.  相似文献   

7.
Fluorescent nanodiamonds (FNDs) are vital to many emerging nanotechnological applications, from bioimaging and sensing to quantum nanophotonics. Yet, understanding and engineering the properties of fluorescent defects in nanodiamonds remain challenging. The most comprehensive study to date is presented, of the optical and physical properties of five different nanodiamond samples, in which fluorescent nitrogen‐vacancy (NV) centers are created using different fabrication techniques. The FNDs' fluorescence spectra, lifetime, and spin relaxation time (T1) are investigated via single‐particle confocal fluorescence microscopy and in ensemble measurements in solution (T1 excepted). Particle sizes and shapes are determined using scanning electron microscopy and correlated with the optical results. Statistical tests are used to explore correlations between the properties of individual particles and also analyze average results to directly compare different fabrication techniques. Spectral unmixing is used to quantify the relative NV charge‐state (NV? and NV0) contributions to the overall fluorescence. A strong variation is found and quantified in the properties of individual particles within all analyzed samples and significant differences between the different particle types. This study is an important contribution toward understanding the properties of NV centers in nanodiamonds. It motivates new approaches to the improved engineering of NV‐containing nanodiamonds for future applications.  相似文献   

8.
We have used the density functional method to model the atomic and electronic structure of diamond nanocrystals passivated by hydrogen atoms and either not containing defects or containing a single [NV] center. We have shown that in all cases, after relaxation the nanocrystals are formed as diamond-like structures. We have studied the features of the electronic structure of the nanocrystals. We have analyzed in detail the mechanism for the formation of energy levels in the bandgap due to [NV] centers. We have established that the optical absorption and fluorescence spectra for the [NV] centers are mainly associated with transitions of electrons between the highest occupied β orbitals (projection of the electron spin equal to +1/2) and lower unoccupied α orbitals (projection of the electron spin equal to −1/2). The results on the localization and energy position of the states in the bandgap match data obtained for the [NV] center in bulk diamond. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 1, pp. 86–92, January–February, 2007.  相似文献   

9.
Diamond single crystals synthesized from powder detonation nanodiamonds (DNDs) by means of treatment at high pressures (P ~ 7 GPa) and temperatures (T > 1300°C) have been studied by electron paramagnetic resonance (EPR). A key feature of treatment (high-pressure high–temperature (HPHT) sintering) is the use of low molecular weight alcohols in the process. The appearance of a hyperfine EPR signal structure due to “paramagnetic nitrogen” (P1 centers) is explained by the growth of submicron and micron diamond single crystals from DND nanocrystals by the oriented attachment and coalescence mechanism. Such growth and coarsening of crystals appreciably decreases the concentration of paramagnetic centers, the presence of which hinders the detection of a hyperfine structure in the EPR signal from P1 centers, in the near-surface areas of coalesced and grown together DND particles. It has been shown that the concentration of paramagnetic defects of all types decreases to ~3.1 × 1018 g–1 (~60 ppm) during HPHT treatment at T = 1650°C. This causes the successful identification of P1 centers, whose fraction is no less than ~40% of the total amount of paramagnetic centers in microcrystals synthesized by HPHT sintering.  相似文献   

10.
This communication presents new data on phosphorus-containing centers in synthetic diamonds grown in the P–C system by high-pressure high-temperature (HTHP) method and annealed in the temperature range of 2,073–2,573 K. The electron paramagnetic resonance (EPR) study has shown that as-grown at 1,873 K diamonds contain single substitutional nitrogen (P1) and single substitutional phosphorus (MA1) centers. The main part of the spin density in the MA1 center locates on the carbon atom C1 separated from phosphorus by one carbon atom. HPHT annealing (7 GPa, 2,073–2,273 K) results in aggregating substitutional nitrogen and phosphorus atoms. On the first step of annealing (2,073 K) of as-grown diamonds nitrogen–phosphorus NIRIM8 (NP1) centers are created. It is supposed that nitrogen and phosphorus atoms in this center are separated by two carbons. Further temperature increasing shifts the nitrogen atom toward phosphorus and creates two new nitrogen–phosphorus centers NP2 and NP3 with the supposed structures C1–N–C–P and N–P–C1, respectively. The main part of the spin density in MA1, NIRIM8 (NP1), NP2 and NP3 is located on the carbon atom C1. Annealing these samples in the temperature range of 2,073–2,273 K has shown vanishing of NIRIM8 and increasing of NP2 and NP3 centers. HPHT annealing of diamonds at 2,573 K significantly changes the electron paramagnetic resonance (EPR) spectra: all previous nitrogen–phosphorus centers disappear and two new phosphorus centers NP4 and NP5 are created. Features of these centers are g ≈ 2.001 and high spin density located on the phosphorus atoms. The NP5 center is sensitive to X-ray irradiation and low-temperature annealing. The EPR spectra of both these centers are due to the hyperfine structure of one phosphorus atom. The structures of all phosphorus-containing centers are discussed.  相似文献   

11.
In an effort to realize a two-bit processor for a quantum computer on the basis of single nitrogen-vacancy defect centers (NV centers) in diamond, the optically detected nutations of the electron spin of a single NV center in the ground state and of the nuclear spin of a 13C atom located at a diamond lattice site nearest to the NV center are studied. The photodynamics of NV and NV + 13C centers under different temperatures and optical excitation conditions is discussed. A seven-level model of a center excited by radiation from an Ar+ laser at room temperature is proposed. On the basis of this model, the experimental spectra of optically detected electron paramagnetic and electron-nuclear double resonances of single NV and NV + 13C centers in diamond nanocrystals, as well as experimental data on the optically detected nutations of the electron and nuclear spins of these centers caused by the actions of pulsed microwave and radiofrequency fields, respectively, are interpreted.  相似文献   

12.
The Na+-translocating nicotinamide adenine dinucleotide (NADH):quinine oxidoreductase (Na+–NQR) is a component of respiratory chain of various bacteria and it generates a redox-driven transmembrane electrochemical Na+ potential. It contains four different flavin prosthetic groups, including two flavin mononucleotide (FMN) residues covalently bound to the subunits NqrB and NqrC. Na+–NQR from Vibrio harveyi was poised at different redox potentials to prepare two samples, containing either both FMNNqrB and FMNNqrC or only FMNNqrB in a paramagnetic state. These two samples were comparatively studied using pulse electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and electron-electron double resonance (ELDOR) spectroscopy. The echo-detected EPR spectra and electron spin relaxation properties were very similar for flavin radicals in both samples. The splitting of the outer peaks in the proton ENDOR spectra, assigned to the C(8α) methyl protons, allows to identify both radicals as anionic flavosemiquinones. The mean interspin distance of 20.7 Å between these radicals was determined by pulse ELDOR experiment, which allows to estimate the edge-to-edge distance (r e) between these flavin centers as: 11.7 Å < r e < 20.7 Å. The direct electron transfer between FMNNqrB and FMNNqrC during the physiological turnover of the Na+–NQR complex is suggested.  相似文献   

13.
刘东奇  常彦春  刘刚钦  潘新宇 《物理学报》2013,62(16):164208-164208
通过电子注入的方法制备了含氮空位色心单光子源的金刚石荧光纳米颗粒. 自旋回声测试结果表明, 纳米颗粒中氮空位色心的相干时间T2很短, 介于0.86 μs至5.6 μs之间. Ramsey干涉条纹测试结果表明, 氮空位色心NV1点的退相干时间T2* 最大, 为0.7 μs, 其电子自旋共振谱可分辨的最小线宽为1.05 MHz. 并且NV1点的电子自旋共振谱可分辨氮空位色心本身的14N核自旋与 氮空位色心电子自旋之间的2.2 MHz超精细相互作用, 这对于在金刚石纳米颗粒中实现核自旋的操控和多个量子比特的门操作具有重要意义. 关键词: 纳米颗粒 氮空位色心 电子自旋  相似文献   

14.
Traditionally, n-type silicon is not regarded as a good anode of organic light emitting diode (OLED) due to the extremely low hole concentration in it; however, when doped with Au element which acts as carrier generation centers, it can be, as shown in our previous work. In this study, we demonstrate a new kind of carrier generation centers in n+-type silicon, which are the defects produced by 5 MeV electron irradiation. The density of carrier generation centers in the irradiated n+-Si anode can be controlled by tuning the electron irradiation time, and thus hole injection current in the OLEDs with the irradiated n+-Si anode can be optimized, leading to their much higher maximum efficiencies than those of the OLEDs with non-irradiated n+-Si anode. For a green phosphorescent OLED with the irradiated n+-Si anode, the current efficiency and power efficiency reach up to 12.1 cd/A and 4.2 lm/W, respectively.  相似文献   

15.
13C spin-lattice relaxation times in the laboratory frame, ranging from 1.4 to 36 h, have been measured on a suite of five natural type Ia and Ib diamonds at 4.7 T and 300 K. Each of the diamonds contains two types of fixed paramagnetic centers with overlapping inhomogeneous electron paramagnetic resonance (EPR) lines. EPR techniques have been employed to identify these defects and to determine their concentrations and relaxation times at X-band. Spin-lattice relaxation behavior of 13C in diamonds containing paramagnetic P1, P2, N2. and N3 centers are discussed. Depending on the paramagnetic impurity types and concentrations present in each diamond, three different nuclear spin-lattice relaxation (SLR) paths exist, namely that due to electron SLR mechanisms and two types of three-spin processes (TSPs). The one three-spin process (TSP1) involves a simultaneous transition of two electron spins belonging to the same hyperfine EPR line and a flip of a 13C spin, while the other process (TSP2) involves two electron spins belonging to different hyperfine EPR lines and a 13C spin. It is shown that the thermal contact between the 13C nuclear Zeeman and electron dipole-dipole interaction reservoirs is field dependent, thus forming a bottleneck in the 13C relaxation path due to TSP1 at high magnetic fields.  相似文献   

16.
Electron spin resonance has been used to study three similar, but distinct, S = 1 defects (labelled E″ centers) in high-quality synthetic quartz crystals. These centers are produced by electron irradiation and their concentrations depend on the irradiation temperature, the nature of previous irradiations and thermal anneals, and whether the sample is swept or unswept. The radiation-induced mobility of interstitial alkali ions (Li+ and Na+) correlates with the production of E″ centers.  相似文献   

17.
Paramagnetic centers generated by swift heavy ion irradiation of LiF crystals could be identified as electrons trapped at regular anion vacancy sites (F centers). Well-resolved electron-nuclear double resonance (ENDOR) spectra resulting from the hyperfine interaction with 7Li and 19F nuclei located in six different shells could be recorded. In order to preserve the millimeter-sized crystals, a cavity-free setup was used for the ENDOR experiments at an electronic Larmor frequency of 240 GHz. Apparently even under conditions of extremely high local energy loss in the ion track, the local density of persistent F centers is still sufficiently low to prevent distortions of the ionic crystal. The spread of hyperfine coupling constants was less than 5 %. Neither in electron paramagnetic resonance (EPR) nor in ENDOR spectra there was evidence for different types of paramagnetic centers. When performing ENDOR by applying the radiofrequency pulse directly after the 3-pulse Mims-type microwave sequence, an anomalous ENDOR effect was observed. The observed “positive” and “negative” ENDOR response can be attributed to efficient hole and anti-hole formation in the inhomogeneously broadened EPR spectrum and can be used to determine the sign of hyperfine coupling constants.  相似文献   

18.
Inverted organic solar cells are fabricated using low-temperature-annealed ZnO film as an electron transport layer. Uniform ZnO films were prepared by spin coating a diethylzinc (DEZ) precursor solution in air, followed by annealing at 100 °C. Organic solar cells prepared on these ZnO films with a 1:1 P3HT:PCBM blend as the active layer show a high power conversion efficiency of 4.03 %, which is more than 10 % higher than the PCE of solar cells comprising ZnO prepared via a high-temperature sol–gel route.  相似文献   

19.
The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu2+ binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg2+-catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI–DNA–(Cu2+)2 complex. Cu2+ binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu2+ coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu2+ ions.  相似文献   

20.
Thermoluminescence (TL), optical absorption (OA), electron spin resonance (ESR) and their relation to point defects in spessartine have been investigated. The TL glow curve presented four peaks at 150, 220, 260 and 335 °C. The 150 and 335 °C TL peaks growth curves presented a linear growth with radiation dose up to about 400 Gy, supralinearity above this dose, and saturation around 800–1000 Gy. The OA spectrum presented allowed spin transition bands due to Fe3+ and Mn2+ in dodecahedral environment. Absorption bands due to ultraviolet charge transfer of Fe3+ in octahedral and tetrahedral positions were also observed. Two ESR, a strong one around g?~?2 due to Fe3+ in octahedral position, and another weaker one at g?~?4 due to Fe3+ in tetrahedral position, have been detected. The effect of high temperature annealing (600–900 °C) before irradiation was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号