首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The basic elliptic ill-posedness of physical models and numerical schemes for two-fluid flows is a recurring issue that has motivated the introduction of numerous possible correction strategies. In practical applications physical terms are generally present and regularize the models (viscosity, drag, surface tension, etc.). Yet, many numerical schemes were developed with the stringent and self-imposed constraint that the convective part of the models to be solved had to be hyperbolic, regardless of the type and magnitude of the particular physical regularizing terms. This leads to consider the simplest possible two-fluid “backbone” models corrected with the simplest “universal” terms to ensure hyperbolicity.Among the proposed corrections is the introduction of an interfacial pressure, either closed by algebraic relations or by supplementary evolution equations. Concurrently with the shift to hyperbolic behavior, these techniques also affect other features of systems: Kelvin–Helmholtz type instabilities are notably quenched at all scales, a highly undesirable effect in many practical situations. Less commonly recognized are also distortions in the transfers between kinetic, reversible, and irreversible energies, sometimes up to thermodynamic inconsistency.The present work aims at comparing on the standard Ransom-faucet test the results from various available hyperbolic and elliptic schemes and models against an explicit double Lagrange-plus-remap discretization of the basic elliptic, one-pressure, compressible, six-equations system (i.e. with energy equations). Four features are examined on this test: the entropy preservation, the stretched stream profile, the volume fraction discontinuity, and the unstable character of the analytical solution for the simplest backbone model.The paper highlights the fact that the convective part of two-fluid models might not be necessarily hyperbolic provided that it is physically consistent and numerically robust. Observation of published results for Ransom’s test shows that by enforcing hyperbolicity regardless of thermodynamical consistency, numerical models remove instabilities at the volume fraction discontinuity, but at the expense of distorted profiles of the stretched stream due to excessive numerical diffusion and to spurious forces in the momentum equation. The present approach provides a form of neutral starting point before including dissipative terms: robust but not excessively diffusive, with accurate capture of the stretched stream and volume fraction discontinuity for any practical mesh refinement. Moreover, and consistently with the chosen elliptic model, this numerical scheme eventually generates the elliptic instabilities for late times or fine meshes (but remains robust under the appropriate time step restrictions). It can be supplemented by any kind of small-scale regularization term in order to introduce a cut-off under which physical or numerical stability may be necessary.  相似文献   

3.
Particle-laden or droplet-laden turbulent flows occur in many industrial applications and in natural phenomena. Knowledge about the properties of these flows can help to improve the design of unit operations in industry and to predict for instance the occurrence of rain showers. This knowledge can be obtained from experimental research and from numerical simulations. In this paper a review is given of numerical simulation methods for particle-laden flows. There are various simulation methods possible. They range from methods in which all details, including the flow around each particle, are resolved, via point-particle methods, in which for each particle an equation of motion is solved, to Eulerian methods in which equations for particle concentration and velocity are solved. This review puts the emphasis on the intermediate class of methods, the Euler-Lagrange methods in which the continuous phase is described by an Eulerian approach and the dispersed phase in a Lagrangian way with equations of motion for each individual particle.  相似文献   

4.
Study on the numerical schemes for hypersonic flow simulation   总被引:1,自引:0,他引:1  
Hypersonic flow is full of complex physical and chemical processes, hence its investigation needs careful analysis of existing schemes and choosing a suitable scheme or designing a brand new scheme. The present study deals with two numerical schemes Harten, Lax, and van Leer with Contact (HLLC) and advection upstream splitting method (AUSM) to effectively simulate hypersonic flow fields, and accurately predict shock waves with minimal diffusion. In present computations, hypersonic flows have been modeled as a system of hyperbolic equations with one additional equation for non-equilibrium energy and relaxing source terms. Real gas effects, which appear typically in hypersonic flows, have been simulated through energy relaxation method. HLLC and AUSM methods are modified to incorporate the conservation laws for non-equilibrium energy. Numerical implementation have shown that non-equilibrium energy convect with mass, and hence has no bearing on the basic numerical scheme. The numerical simulation carried out shows good comparison with experimental data available in literature. Both numerical schemes have shown identical results at equilibrium. Present study has demonstrated that real gas effects in hypersonic flows can be modeled through energy relaxation method along with either AUSM or HLLC numerical scheme.  相似文献   

5.
Simplified two-dimensional Navier-Stokes equations of the hyperbolic type are derived for viscous mixed (with transition through the sonic velocity) internal and external flows as a result of a special splitting of the pressure gradient in the predominant flow direction into hyperbolic and elliptic components. The application of these equations is illustrated with reference to the calculation of Laval nozzle flows and the problem of supersonic flow past blunt bodies. The hyperbolic approximation obtained adequately describes the interaction between the stream and surfaces for internal and external flows and can be used over a wide Mach number range at moderate and high Reynolds numbers. Examples of the calculation of viscous mixed flows in a Laval nozzle with large longitudinal throat curvature and in a shock layer in the neighborhood of a sphere and a large-aspect-ratio hemisphere-cylinder are given. The problem of determining the drag coefficient of cold and hot spheres is solved in a new formulation for supersonic air flow over a wide range of Reynolds numbers. In the case of low and moderate Reynolds numbers a drag reduction effect is detected when the surface of the sphere is cooled.  相似文献   

6.
We present first‐ and higher‐order non‐oscillatory primitive (PRI) centred (CE) numerical schemes for solving systems of hyperbolic partial differential equations written in primitive (or non‐conservative) form. Non‐conservative systems arise in a variety of fields of application and they are adopted in that form for numerical convenience, or more importantly, because they do not posses a known conservative form; in the latter case there is no option but to apply non‐conservative methods. In addition we have chosen a centred, as distinct from upwind, philosophy. This is because the systems we are ultimately interested in (e.g. mud flows, multiphase flows) are exceedingly complicated and the eigenstructure is difficult, or very costly or simply impossible to obtain. We derive six new basic schemes and then we study two ways of extending the most successful of these to produce second‐order non‐oscillatory methods. We have used the MUSCL‐Hancock and the ADER approaches. In the ADER approach we have used two ways of dealing with linear reconstructions so as to avoid spurious oscillations: the ADER TVD scheme and ADER with ENO reconstruction. Extensive numerical experiments suggest that all the schemes are very satisfactory, with the ADER/ENO scheme being perhaps the most promising, first for dealing with source terms and secondly, because higher‐order extensions (greater than two) are possible. Work currently in progress includes the application of some of these ideas to solve the mud flow equations. The schemes presented are generic and can be applied to any hyperbolic system in non‐conservative form and for which solutions include smooth parts, contact discontinuities and weak shocks. The advantage of the schemes presented over upwind‐based methods is simplicity and efficiency, and will be fully realized for hyperbolic systems in which the provision of upwind information is very costly or is not available. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Various forms of writing the Boltzmann equation in an arbitrary orthogonal curvilinear coordinate system are discussed. The derivation is presented of a general transport equation and moment equations containing moments of the distribution function no higher than the fourth. For a gas of Maxwellian molecules it is shown that the system of moment equations for flows which differ little from equilibrium flows transforms into the system of hydrodynamic equations. The resulting equations may be useful in solving problems on motions of a rarefied gas by the moment methods. The results are valid for both the Boltzmann equation and model kinetic equations.The author wishes to thank A. A. Nikol'skii for discussions and helpful comments.  相似文献   

8.
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.  相似文献   

9.
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.  相似文献   

10.
This paper presents a preconditioning technique for solving a two‐dimensional system of hyperbolic equations. The main attractive feature of this approach is that, unlike a technique based on simply extending the solver for a one‐dimensional hyperbolic system, convergence and stability analysis can be investigated. This method represents a genuine numerical algorithm for multi‐dimensional hyperbolic systems. In order to demonstrate the effectiveness of this approach, applications to solving a two‐dimensional system of Euler equations in supersonic flows are reported. It is shown that the Lax–Friedrichs scheme diverges when applied to the original Euler equations. However, convergence is achieved when the same numerical scheme is employed using the same CFL number to solve the equivalent preconditioned Euler system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The nonequilibrium steady gas flows under the external forces are essentially associated with some extremely complicated nonlinear dynamics, due to the acceleration or deceleration effects of the external forces on the gas molecules by the velocity distribution function. In this article, the gas-kinetic unified algorithm (GKUA) for rarefied transition to continuum flows under external forces is developed by solving the unified Boltzmann model equation. The computable modeling of the Boltzmann equation with the external force terms is presented at the first time by introducing the gas molecular collision relaxing parameter and the local equilibrium distribution function integrated in the unified expression with the flow state controlling parameter, including the macroscopic flow variables, the gas viscosity transport coefficient, the thermodynamic effect, the molecular power law, and molecular models, covering a full spectrum of flow regimes. The conservative discrete velocity ordinate (DVO) method is utilized to transform the governing equation into the hyperbolic conservation forms at each of the DVO points. The corresponding numerical schemes are constructed, especially the forward-backward MacCormack predictor-corrector method for the convection term in the molecular velocity space, which is unlike the original type. Some typical numerical examples are conducted to test the present new algorithm. The results obtained by the relevant direct simulation Monte Carlo method, Euler/Navier-Stokes solver, unified gas-kinetic scheme, and moment methods are compared with the numerical analysis solutions of the present GKUA, which are in good agreement, demonstrating the high accuracy of the present algorithm. Besides, some anomalous features in these flows are observed and analyzed in detail. The numerical experience indicates that the present GKUA can provide potential applications for the simulations of the nonequilibrium external-force driven flows, such as the gravity, the electric force, and the Lorentz force fields covering all flow regimes.  相似文献   

12.
We propose a new model and a solution method for two‐phase two‐fluid compressible flows. The model involves six equations obtained from conservation principles applied to a one‐dimensional flow of gas and liquid mixture completed by additional closure governing equations. The model is valid for pure fluids as well as for fluid mixtures. The system of partial differential equations with source terms is hyperbolic and has conservative form. Hyperbolicity is obtained using the principles of extended thermodynamics. Features of the model include the existence of real eigenvalues and a complete set of independent eigenvectors. Its numerical solution poses several difficulties. The model possesses a large number of acoustic and convective waves and it is not easy to upwind all of these accurately and simply. In this paper we use relatively modern shock‐capturing methods of a centred‐type such as the total variation diminishing (TVD) slope limiter centre (SLIC) scheme which solve these problems in a simple way and with good accuracy. Several numerical test problems are displayed in order to highlight the efficiency of the study we propose. The scheme provides reliable results, is able to compute strong shock waves and deals with complex equations of state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In all previous numerical investigations of spherical Couette flow only axisymmetric regimes were considered. At the same time, in experiments [1–4] it was found that when both spheres rotate and the layer is thin centrifugal instability of the main flow leads to the appearance of nonaxisymmetric secondary flows of the azimuthal traveling wave type. The results of an initial numerical investigation of these flows are presented below. Solving the linear problem of the stability of the main flow and simulating the secondary flows on the basis of the complete nonlinear Navier-Stokes equations has made it possible to supplement and explain many of the results obtained experimentally. The type of bifurcation and the structure of the disturbances whose growth leads to the appearance of three-dimensional nonstationary flows are determined, and the transitions between different secondary regimes in the region of weak supercriticality are described.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 3–15, January–February, 1995.  相似文献   

14.
Simulating thermal effects in pipeline flow involves solving a coupled non-linear system of first-order hyperbolic equations. The advection term has two large eigenvalues of opposite signs, corresponding to the propagation of high-speed sound waves, and one eigenvalue close to or even equal to zero, representing the much slower fluid flow velocity, which transports temperature. Standard collocation methods work well for isothermal flow in pipelines, but the stagnating eigenvalue causes difficulties when thermal effects are included. In a companion paper we formulate and analyse a new numerical method for the non-linear system which arises in thermal modelling. The new method applies to general coupled systems of non-linear first-order hyperbolic partial differential equations with one degenerate eigenvalue. In the present paper we focus on a linearized constant coefficient form of the thermal flow equations. This substantially simplifies presentation of the error analysis for the numerical scheme. We also include numerical results for the method applied to the fully non-linear system. Both the error analysis and the numerical experiments show that the difficulties that come from the application of standard collocation can be overcome by using upwinded piecewise constant functions for the degenerate component of the solution.  相似文献   

15.
We propose a new method for numerical simulation of gas dynamics based on kinetic theory. The method is based on a cumulant-expansion-ansatz for the phase space density, which leads to a set of quasi-linear, hyperbolic partial differential equations. The method is compared to the moment method of Grad. Both methods agree for low-order approximations but the method proposed shows additional non-linear terms for high order approximations. Boundary conditions on the cumulants for an ideally reflecting and an ideally rough boundary surface are derived from conditions on the phase space density. A Lax-method is used for numerical analysis of a 2d-BGK fluid, which results in an easy-to-implement algorithm well suited for implementation on massivly parallel computers. The results are found to agree qualitatively with predictions from moment theories. Received August 10, 2000  相似文献   

16.
Thermocapillary flows in an infinitely long liquid cylinder surrounded by a coaxial gas layer with a controlled flow rate and the stability of such flows are investigated. In the layers a constant axial temperature gradient is maintained. An exact solution of the equations of motion describing the steady-state flow in this two-phase system is derived. Possible flow regimes and their stability in the linear approximation are studied. It is shown that in the liquid phase the thermocapillary flow can be completely stopped by the gas flow at the expense of the interaction between mechanical stresses at the interface. The results obtained indicate the possibility of controlling thermocapillary flows and their stability by means of gas flows.  相似文献   

17.
时间推进方法目前广泛应用于叶轮机械内部流场的计算,这种方法可以划分成显式时间推进方法和隐式时间推进方法.本文简要介绍了时间推进方法用于叶轮机械内部流场计算的起源及这种方法的优点和缺点,重点记述了国内外叶轮机界应用显式时间推进方法和隐式时间推进方法计算叶轮机内部流场的最新进展,并简要介绍世界上一些著名的研究机构开发的时间推进方法计算程序所采用的数值计算方法   相似文献   

18.
The pseudo‐time formulation of Jameson has facilitated the use of numerical methods for unsteady flows, these methods have proved successful for steady flows. The formulation uses iterations through pseudo‐time to arrive at the next real time approximation. This iteration can be used in a straightforward manner to remove sequencing errors introduced when solving mean flow equations together with another set of differential equations (e.g. two‐equation turbulence models or structural equations). The current paper discusses the accuracy and efficiency advantages of removing the sequencing error and the effect that building extra equations into the pseudo‐time iteration has on its convergence characteristics. Test cases used are for the turbulent flow around pitching and ramping aerofoils. The performance of an implicit method for solving the pseudo‐steady state problem is also assessed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Based on the Bhatnagar–Gross–Krook (BGK) Boltzmann model equation, the unified simplified velocity distribution function equation adapted to various flow regimes can be presented. The reduced velocity distribution functions and the discrete velocity ordinate method are developed and applied to remove the velocity space dependency of the distribution function, and then the distribution function equations will be cast into hyperbolic conservation laws form with non‐linear source terms. Based on the unsteady time‐splitting technique and the non‐oscillatory, containing no free parameters, and dissipative (NND) finite‐difference method, the gas kinetic finite‐difference second‐order scheme is constructed for the computation of the discrete velocity distribution functions. The discrete velocity numerical quadrature methods are developed to evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm for the gas dynamical problems from various flow regimes is developed. To test the reliability of the present numerical method, the one‐dimensional shock‐tube problems and the flows past two‐dimensional circular cylinder with various Knudsen numbers are simulated. The computations of the related flows indicate that both high resolution of the flow fields and good qualitative agreement with the theoretical, DSMC and experimental results can be obtained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
应用预处理方法求解二维可压缩Navier-Stokes方程,发展出一套既适用于低速流动,也可用于可压缩流动的全速度流场解算方法.空间格式选用Ausm类格式,并采用多步Runge-Kutta时间推进方法.数值模拟了鼓包(Bump),RAE2822翼型,多段高升力翼型的不同速度绕流流场,并与实验数据进行了对比.结果表明预处...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号