首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in multi-domain leucine-rich repeat kinase 2 (LRRK2) have been an interest to researchers as these mutations are associated with Parkinson's disease. G2019S mutation in LRRK2 kinase domain leads to the formation of additional hydrogen bonds by S2019 which results in stabilization of the active state of the kinase, thereby increasing kinase activity. Two additional hydrogen bonds of S2019 are reported separately. Here, a mechanistic picture of the formation of additional hydrogen bonds of S2019 with Q1919 (also with E1920) is presented using ‘active’ Roco4 kinase as a homology model and its relationship with the stabilization of the ‘active’ G2019S LRRK2 kinase. A conformational flipping of residue Q1919 was found which helped to form stable hydrogen bond with S2019 and made ‘active’ state more stable in G2019S LRRK2. Two different states were found within the ‘active’ kinase with respect to the conformational change (flipping) in Q1919. Two doubly-mutated systems, G2019S/Q1919A and G2019S/E1920 K, were studied separately to check the effect of Q1919 and E1920. For both cases, the stable S2 state was not formed, leading to a decrease in kinase activity. These results indicate that both the additional hydrogen bonds of S2019 (with Q1919 and E1920) are necessary to stabilize the active G2019S LRRK2.  相似文献   

2.
The F143E mutant form of the recombinant horseradish peroxidase was reactivated fromE. coli inclusion bodies. The mutation inhibits heme entrapment and results in a decrease in the catalytic activity, mainly affecting the stage of the oxidation of a donor substrate (ABTS, iodide). An increase in stability of the mutant form obtained under radiation inactivation over that of the wild-type recombinant enzyme was observed. The data obtained confirms the proposed location of Phel43 at the entrance of the active center, hence its replacement by the negatively charged glutamic acid residue retards heme entrapment and substrate binding, thus protecting the active center of the enzyme against the radicals generated by radiolysis.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 371–374, February, 1995.  相似文献   

3.
An analysis of the water molecules in the first solvation shell obtained from the molecular dynamics simulation of the amyloid beta(10-35)NH2 peptide and the amyloid beta(10-35)NH2E22Q "Dutch" mutant peptide is presented. The structure, energetics, and dynamics of water in the hydration shell have been investigated using a variety of measures, including the hydrogen bond network, the water residence times for all the peptide residues, the diffusion constant, experimentally determined HN amide proton exchange, and the transition probabilities for water to move from one residue to another or into the bulk. The results of the study indicate that: (1) the water molecules at the peptide-solvent interface are organized in an ordered structure similar for the two peptide systems but different from that of the bulk, (2) the peptide structure inhibits diffusion perpendicular to the peptide surface by a factor of 3 to 5 relative to diffusion parallel to the peptide surface, which is comparable to diffusion of bulk water, (3) water in the first solvation shell shows dynamical relaxation on fast (1-2 ps) and slow (10-40 ps) time scales, (4) a novel solvent relaxation master equation is shown to capture the details of the fast relaxation of water in the peptide's first solvation shell, (5) the interaction between the peptide and the solvent is stronger in the wild type than in the E22Q mutant peptide, in agreement with earlier results obtained from computer simulations [Massi, F.; Straub, J. E. Biophys J 2001, 81, 697] correlated with the observed enhanced activity of the E22Q mutant peptide.  相似文献   

4.
The inactivation of native and recombinant horseradish peroxidase in the presence of hydrogen peroxide and under ionizing radiation was studied. The types of peroxidase activity differ in sensitivity towards the inactivating effect of H2O2: the activity in relation to the iodide ion is more stable than the activity in relation to ammonium 2,2-azinobis(3ethylbenzothiazoline-6-sulfonate) (ABTS) ando-phenylenediamine. Similar inactivation was observed in the course of the radiolysis of peroxidase. It was assumed that the initial period of peroxidase inactivation in the presence of hydrogen peroxide has a radical nature and is related to the generation of Superoxide radicals, which modify the protein moiety, resulting in the destruction of heme. The R-670 compound was not formed under the conditions studied. However, the E EI transition occurred, depending on the radiation dose and the enzyme concentration.Translated fromIzyestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 176–179, January, 1995.  相似文献   

5.
采用基因定点突变的方法, 构建了细菌视紫红质(Bacteriorhodopsin, BR)的3种突变体蛋白, 即单突变体BRE194Q、三突变体BRI119T/T121S/A126T和四突变体BRI119T/T121S/A126T/E194Q. 测定了突变体和野生型BR在水溶液和聚乙烯醇(PVA)膜中的紫外-可见吸收光谱和拉曼光谱, 采用显微视频录像技术记录了PVA膜中野生型和3个突变体样品的M态寿命. 与野生型BR相比较, 在水溶液中, 单突变体的可见吸收光谱的最大吸收峰发生了轻微红移, 三突变体和四突变体的最大吸收峰则分别发生了11.0和12.0 nm的明显蓝移. 在PVA膜中, 3个突变体BR的可见吸收光谱的最大吸收峰均发生蓝移, 四突变体BR的最大吸收峰为557 nm, 蓝移达15.0 nm. 四突变体BR在水溶液中的共振拉曼光谱不仅表现有与M态特征相关的1567和1573 cm-1谱带, 还有L态特征带1334 cm-1及N态特征带1200, 1328, 1530和1549 cm-1. 在PVA膜中的样品与在水溶液中的比较, 四突变体共振拉曼光谱的1334和1549 cm-1带消失, 同时1187 cm-1带的强度下降. 显微视频录像技术记录的PVA膜中样品的M态寿命表明, 野生型BR的M态寿命最短, 单突变体的M态寿命小于1.0 s, 三突变体的寿命为3.0 s, 四突变体的寿命为2.0 s.  相似文献   

6.
The stability of recombinant wild-type horseradish peroxidase and its tryptophan-less mutant Trp117Phe toward γ-radiation was studied. The absence of tryptophan in the enzyme molecule results in a certain stabilization, which is manifested as the absence of the initial drop in activity and appearance of a lag period for doses of up to 45 Gy. Contrary to the wild-type enzyme, the dose response of the mutant is almost independent of the nature of the substrate used to measure the catalytic activity; this indirectly indicates that Trp117 participates in the oxidation of substrates. Pretreatment of the wild-type recombinant enzyme with hydrogen peroxide destabilizes the enzyme towards irradiation, while the same procedure for the mutant enzyme has virtually no effect on the dose response curve. This suggests the modification of Trp117 in the oxidation of the native enzyme with H2O2 in the absence of electron-donor substrates, which is the modification of Trp171 in the recombinant lignin peroxidase. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2355–2358, December, 1999.  相似文献   

7.
The mechanism of photoinduced electron transfer (PET) from the aromatic amino acids (Trp32, Tyr35 and Trp106) to the excited flavin mononucleotide (FMN) in the wild type (WT) and four single amino acid substitution isomers (E13T, E13Q, W32A and W32Y) of FMN binding protein (FBP) from the Desulfovibrio vulgaris (Miyazaki F) were simultaneously analyzed (Method A) with the Marcus-Hush (MH) theory and Kakitani-Mataga (KM) theory using ultrafast fluorescence dynamics of these proteins. In addition, the PET mechanism of the WT, E13T and E13Q FBP systems (Method B) were also analyzed with both MH and KM theories. The KM theory could describe all of the experimental fluorescence decays better than the MH theory by both Methods A and B. The PET rates were found to largely depend on the electrostatic energies between photo-products, isoalloxazine (Iso) anion and the PET donor cations, and the other ionic groups, and hence on static dielectric constants. The dielectric constant (ε(0)(DA)) around the PET donors and acceptor was separately determined from those (ε(0)(j), j = WT, E13T, E13Q, W32Y and W32A) in the domain between the Iso anion or the donor cations and the other ionic groups in the proteins. The values of ε(0)(DA) were always lower than those of ε(0)(j), which is reasonable because no amino acid exists between the PET donors and acceptor in all systems. The values of the dielectric constants ε(0)(j) (j = WT, E13T and E13Q) were similar to those obtained previously from the analysis of the crystal structures and the average lifetimes of these FBP proteins. Energy gap law in the FBP systems was examined. An excellent parabolic function of the logarithms of the PET rates was obtained against the total free energy gap. The PET in these FBP isomers mostly took place in the so-called normal region, and partly in the inverted region.  相似文献   

8.
Spectrally resolved infrared stimulated vibrational echo experiments are used to measure the vibrational dephasing of a CO ligand bound to the heme cofactor in two mutated forms of the cytochrome c552 from Hydrogenobacter thermophilus. The first mutant (Ht-M61A) is characterized by a single mutation of Met61 to an Ala (Ht-M61A), while the second variant is doubly modified to have Gln64 replaced by an Asn in addition to the M61A mutation (Ht-M61A/Q64N). Multidimensional NMR experiments determined that the geometry of residue 64 in the two mutants is consistent with a non-hydrogen-bonding and hydrogen-bonding interaction with the CO ligand for Ht-M61A and Ht-M61A/Q64N, respectively. The vibrational echo experiments reveal that the shortest time scale vibrational dephasing of the CO is faster in the Ht-M61A/Q64N mutant than that in Ht-M61A. Longer time scale dynamics, measured as spectral diffusion, are unchanged by the Q64N modification. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to confirm that the dynamical difference induced by the Q64N mutation is primarily an increase in the fast (hundreds of femtoseconds) frequency fluctuations, while the slower (tens of picoseconds) dynamics are nearly unaffected. We conclude that the faster dynamics in Ht-M61A/Q64N are due to the location of Asn64, which is a hydrogen bond donor, above the heme-bound CO. A similar difference in CO ligand dynamics has been observed in the comparison of the CO derivative of myoglobin (MbCO) and its H64V variant, which is caused by the difference in axial residue interactions with the CO ligand. The results suggest a general trend for rapid ligand vibrational dynamics in the presence of a hydrogen bond donor.  相似文献   

9.
利用平衡析,原子吸收,荧光滴定和荧光寿命测定等方法确定了皖南尖吻蝮蛇蛇毒纤溶组分中Ca^2+含量,并利用荧光光谱研究了Tb^3+与FP中色氨酸残基之间能量转移和FP中的微区结构。  相似文献   

10.
建立了测定塑料饮料瓶中双酚A的Brij35增敏荧光分析法.实验考察了不同介质及pH、静置时间、介质用量、金属离子等因素对双酚A(BPA)荧光强度的影响.结果表明,在所探讨的7种介质中Brij 35荧光增敏效果最好,据此建立了一种用Brij35增敏荧光光度法测定双酚A的新方法.方法线性范围为2.0×10-8~1.0×10-5 mol/L,检出限为2.5×10-8 mol/L,相对标准偏差为1.92%.该方法快速、简便、灵敏度高,对实际样品塑料饮料瓶中双酚A的检测,结果满意.  相似文献   

11.
Copper radioisotopes are generally employed for cancer imaging and therapy when firmly coordinated via a chelating agent coupled to a tumor-seeking vector. However, the biologically triggered Cu2+-Cu+ redox switching may constrain the in vivo integrity of the resulting complex, leading to demetallation processes. This unsought pathway is expected to be hindered by chelators bearing N, O, and S donors which appropriately complements the borderline-hard and soft nature of Cu2+ and Cu+. In this work, the labelling performances of a series of S-rich polyazamacrocyclic chelators with [64Cu]Cu2+ and the stability of the [64Cu]Cu-complexes thereof were evaluated. Among the chelators considered, the best results were obtained with 1,7-bis [2-(methylsulfanyl)ethyl]-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). DO2A2S was labelled at high molar activities in mild reaction conditions, and its [64Cu]Cu2+ complex showed excellent integrity in human serum over 24 h. Biodistribution studies in BALB/c nude mice performed with [64Cu][Cu(DO2A2S)] revealed a behavior similar to other [64Cu]Cu-labelled cyclen derivatives characterized by high liver and kidney uptake, which could either be ascribed to transchelation phenomena or metabolic processing of the intact complex.  相似文献   

12.
色氨酸残基光寿命监测了大肠杆菌碱性磷酸酶在不同变性剂中展开过程的构象 变化.结果表明:不同变性剂加人蛋白质溶液中,色氨酸残基的微环境发生了较大 的变化,磷光发射减弱,寿命缩短,预示了色氨酸残基从刚性的疏水内芯转移到蛋 白质表面;通过Arrthenius关系式获得的热动力学参数如活化能(E_a)、活化熵 (△S°)、活开过程中间态的形成.  相似文献   

13.
GFP mutants are known to display fluorescence flickering, a process that occurs in a wide time range. Because serine 65, threonine 203, glutamate 222, and histidine 148 have been indicated as key residues in determining the GFP fluorescence photodynamics, we have focused here on the role of histidine 148 and glutamate 222 by studying the fluorescence dynamics of GFPmut2 (S65A, V68L, and S72A GFP) and its H148G (Mut2G) and E222Q (Mut2Q) mutants. Two relaxation components are found in the fluorescence autocorrelation functions of GFPmut2: a 10-100 micros pH-dependent component and a 100-500 micros laser-power-dependent component. The comparison of these three mutants shows that the mutation of histidine 148 to glycine induces a 3-fold increase in the protonation rate, thereby indicating that the protonation-deprotonation of the chromophore occurs via a proton exchange with the solution mediated by the histidine 148 residue. The power-dependent but pH-independent relaxation mode, which is not affected by the E222Q and H148G mutations, is due to an excited-state process that is probably related to conformational rearrangements of the chromophore after the photoexcitation, more than to the chromophore excited-state proton transfer.  相似文献   

14.
Neocarzinostatin (NCS), an antitumor protein antibiotic, is composed of apo-neocarzinostatin (apo-NCS) and neocarzinostatin-chromophore (NCS-chr), the principle of the biological activities of NCS. Apo-NCS having two tryptophan (Trp) residues at positions (39 and 83) was chemically modified by N-bromosuccinimide in a study on the correlation of the binding site(s) of NCS-chr. Selective oxidation of Trp residues was observed when NCS was titrated with N-bromosuccinimide. In contrast, non-selective oxidation of the two Trps on apo-NCS was observed and both Trp (39 and 83) of apo-NCS were titrated with N-bromosuccinimide. After selective oxidation, the remaining Trp residue of NCS was assigned as Trp (83). These results clearly indicate that the Trp (83) residue of apo-NCS changed from the "reactive type" to the "non-reactive type" after the binding of NCS-chr with apo-NCS. The fluorescence emission intensity of apo-NCS generated from the Trp (39) residue was quenched by NCS-chr. These data suggest that NCS-chr directly interacts with the Trp (39) residue and that a beta-sheeted loop containing the Trp (83) residue of apo-NCS changes the high-order structure upon binding with NCS-chr.  相似文献   

15.
The structural and dynamical properties of five FMN binding protein (FBP) dimers, WT (wild type), E13 K (Glu13 replaced by Lys), E13 R (Glu13 replaced by Arg), E13 T (Glu13 replaced by Thr) and E13Q (Glu13 replaced by Gln), were investigated using a method of molecular dynamics simulation (MDS). In crystal structures, subunit A (Sub A) and subunit B (Sub B) were almost completely equivalent in all of the five FBP dimers. However, the predicted MDS structures of the two subunits were not equivalent in solution, revealed by the distances and inter-planar angles between isoalloxazine (Iso) and aromatic amino acids (Trp32, Tyr35 and Trp106) as well as the hydrogen bonding pairs between Iso and nearby amino acids. Residue root of mean square fluctuations (RMSF) also displayed considerable differences between Sub A and Sub B and in the five FBP dimers. The dynamics of the whole protein structures were examined with the distance (RNN) between the peptide N atom of the N terminal (Met1) and the peptide N atom of the C terminal (Leu122). Water molecules were rarely accessible to Iso in all FBP dimers which are in contrast with other flavoenzymes.  相似文献   

16.
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve the fluorescence spectra of two tryptophan (Trp) residues in alcohol dehydrogenase and lysozyme. In each protein, one Trp residue is buried in a hydrophobic domain of the protein matrix and the other Trp residue is located at a hydrophilic domain close to the protein-water interface. Fluorescence quenching by iodide ion, a hydrophilic quencher, was employed as a perturbation to induce the intensity change in the spectra. The Trp residue which is located at the hydrophilic domain is effectively quenched by the quencher, while the Trp residue located at the hydrophobic domain is protected from the quenching. Therefore, the fluorescence of these two Trp residues have a different sensitivity to the quenching, showing a different response to the concentration of the quencher. Fluorescence spectra of the two Trp residues in alcohol dehydrogenase, which are heavily overlapped in conventional one-dimensional spectra, have been successfully resolved by the 2D correlation technique. From the asynchronous correlation map, it was revealed that the quenching of Trp located at the hydrophobic part was brought about after that of Trp located at the hydrophilic part. In contrast, the fluorescence spectra of the two Trp residues could not be resolved after the alcohol dehydrogenase was denatured with guanidine hydrochloride. These results are consistent with the well-known structure of alcohol dehydrogenase. Furthermore, it was elucidated that the present 2D analysis is not interfered by Raman bands of the solvent, which sometimes bring difficulty into the conventional fluorescence analysis. Fluorescence spectra of the Trp residues in lysozyme could not be resolved by the 2D correlation technique. The differences between the two proteins are attributed to the fact that the Trp residue in the hydrophobic site of lysozyme is not sufficiently protected from the quenching.  相似文献   

17.
The neutral form of the chromophore in wild-type green fluorescent protein (wtGFP) undergoes excited-state proton transfer (ESPT) upon excitation, resulting in characteristic green (508 nm) fluorescence. This ESPT reaction involves a proton relay from the phenol hydroxyl of the chromophore to the ionized side chain of E222, and results in formation of the anionic chromophore in a protein environment optimized for the neutral species (the I* state). Reorientation or replacement of E222, as occurs in the S65T and E222Q GFP mutants, disables the ESPT reaction and results in loss of green emission following excitation of the neutral chromophore. Previously, it has been shown that the introduction of a second mutation (H148D) into S65T GFP allows the recovery of green emission, implying that ESPT is again possible. A similar recovery of green fluorescence is also observed for the E222Q/H148D mutant, suggesting that D148 is the proton acceptor for the ESPT reaction in both double mutants. The mechanism of fluorescence emission following excitation of the neutral chromophore in S65T/H148D and E222Q/H148D has been explored through the use of steady state and ultrafast time-resolved fluorescence and vibrational spectroscopy. The data are contrasted with those of the single mutant S65T GFP. Time-resolved fluorescence studies indicate very rapid (< 1 ps) formation of I* in the double mutants, followed by vibrational cooling on the picosecond time scale. The time-resolved IR difference spectra are markedly different to those of wtGFP or its anionic mutants. In particular, no spectral signatures are apparent in the picosecond IR difference spectra that would correspond to alteration in the ionization state of D148, leading to the proposal that a low-barrier hydrogen bond (LBHB) is present between the phenol hydroxyl of the chromophore and the side chain of D148, with different potential energy surfaces for the ground and excited states. This model is consistent with recent high-resolution structural data in which the distance between the donor and acceptor oxygen atoms is < or = 2.4 A. Importantly, these studies indicate that the hydrogen-bond network in wtGFP can be replaced by a single residue, an observation which, when fully explored, will add to our understanding of the various requirements for proton-transfer reactions within proteins.  相似文献   

18.
In bacteriorhodopsin (bR), Arg-82bR has been proven to be a very important residue for functional role of this light-driven proton pump. The arginine residue at this position is a super-conserved residue among archaeal rhodopsins. pharaonis phoborhodopsin (ppR; or called as "pharaonis sensory rhodopsin II") has its absorption maximum at 498 nm and acts as a sensor in the membrane of Natronobacterium pharaonis, mediating the negative phototaxis from the light of wavelength shorter than 520 nm. To investigate the role of the arginine residue (Arg-72ppR) of ppR corresponding to Arg-82bR, mutants whose Arg-72ppR was replaced by alanine (R72A), lysine (R72K), glutamine (R72Q) and serine (R72S) were prepared. These mutants were unstable in low concentrations of NaCl and lost their color gradually when the proteins were solubilized with 0.1% n-dodecyl-beta-D-maltoside. The order of instability was R72S > R72A > R72K > R72Q > the wild type. The rates of denaturation were reduced in a solution of high concentrations of monovalent anions.  相似文献   

19.
Human placental ribonuclease inhibitor (hRI) containing six tryptophan (Trp) residues located at positions 19, 261, 263, 318, 375, and 438 and its complex with RNase A have been studied using steady-state and time-resolved fluorescence (298 K) as well as low-temperature phosphorescence (77 K). Two Trp residues in wild-type hRI and also in the protein-protein complex with RNase A are resolved optically. The accessible surface area values of Trp residues in the wild-type hRI and its complex and consideration of inter-Trp energy transfer in the wild-type hRI reveal that one of the Trp residues is Trp19, which is located in a hydrophobic buried region. The other Trp residue is tentatively assigned as Trp375 based on experimental results on wild-type hRI and its complex. This residue in the wild-type hRI is more or less solvent exposed. Both the Trp residues are perturbed slightly on complex formation. Trp19 moves slightly toward a more hydrophobic region, and the environment of Trp375 becomes less solvent exposed. The complex formation also results in a more heterogeneous environment for both the optically resolved Trp residues.  相似文献   

20.
Abstract Recombinant human erythropoietin is a 4-helix bundle, glycosylated cytokine containing three tryptophan residues at positions 51, 64 and 88 whose phosphorescence emission may represent a sensitive probe of the structure at multiple sites near or at the protein surface. This report characterizes the phosphorescence properties (spectral energy, thermal spectral relaxation and phosphorescence lifetime), from low temperature glasses to ambient temperature, of the native protein plus that of three single point mutation analogs where each Trp was replaced by Phe. The structural information inferred from the phosphorescence parameters was essentially in good agreement with the structure of the Escherichia coli-produced nonglycosylated protein determined by nuclear magnetic resonance (Cheetham et al., Nat Struct Biol [1998] 5:861). The results showed that the fluorescence and phosphorescence spectra of the native protein were entirely due to independent contributions of Trp51 and Trp64 and that Trp88 was quenched under all conditions. The phosphorescence emissions of Trp51 and Trp64 were differentiated by their unique spectra at 77 K with Trp64 exhibiting an unusually blueshifted spectrum likely due to the attractive interaction of Arg110 and Lys116 with the ground state dipole of Trp64. In the native protein the room temperature phosphorescence lifetime of Trp64 was relatively short with a time of 1.62 ms whereas the lifetime of Trp51 was five-fold longer. Characterization of the single point mutation analogs showed that each lifetime was composed of multiple components revealing the presence of multiple stable conformations of the protein at these surface sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号